{"title":"模拟几乎不可压缩的可变形物体","authors":"Raphael Diziol, D. Bayer, Jan Bender","doi":"10.2312/PE/vriphys/vriphys09/031-037","DOIUrl":null,"url":null,"abstract":"We present a new method for simulating almost incompressible deformable objects. A tetrahedral model is used to represent and restore the volume during the simulation. A new constraint, which computes impulses in the one-ring of each vertex of the tetrahedral model, is used in order to conserve the initial volume. With different parameters, the presented method can handle a large variety of different deformation behaviors, ranging from stiff to large deformations and even plastic deformations. The algorithm is easy to implement and reduces the volume error to less than 1% in most situations, even when large deformations are applied.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulating Almost Incompressible Deformable Objects\",\"authors\":\"Raphael Diziol, D. Bayer, Jan Bender\",\"doi\":\"10.2312/PE/vriphys/vriphys09/031-037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method for simulating almost incompressible deformable objects. A tetrahedral model is used to represent and restore the volume during the simulation. A new constraint, which computes impulses in the one-ring of each vertex of the tetrahedral model, is used in order to conserve the initial volume. With different parameters, the presented method can handle a large variety of different deformation behaviors, ranging from stiff to large deformations and even plastic deformations. The algorithm is easy to implement and reduces the volume error to less than 1% in most situations, even when large deformations are applied.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/vriphys/vriphys09/031-037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys09/031-037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulating Almost Incompressible Deformable Objects
We present a new method for simulating almost incompressible deformable objects. A tetrahedral model is used to represent and restore the volume during the simulation. A new constraint, which computes impulses in the one-ring of each vertex of the tetrahedral model, is used in order to conserve the initial volume. With different parameters, the presented method can handle a large variety of different deformation behaviors, ranging from stiff to large deformations and even plastic deformations. The algorithm is easy to implement and reduces the volume error to less than 1% in most situations, even when large deformations are applied.