基于Huber损失函数的鲁棒模糊变系数回归模型

A. Khammar, M. Arefi, M. Akbari
{"title":"基于Huber损失函数的鲁棒模糊变系数回归模型","authors":"A. Khammar, M. Arefi, M. Akbari","doi":"10.1109/CFIS49607.2020.9238742","DOIUrl":null,"url":null,"abstract":"A generalized fuzzy regression model named fuzzy varying coefficient regression model is proposed by Shen et al. [14]. In this study, we introduce a fuzzy varying coefficient regression model based on Huber loss function and a kernel function. Unlike Shen et al.'s approach, the our approach is robust in the presence of outliers data. This advantage is examined by a numerical example.","PeriodicalId":128323,"journal":{"name":"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust fuzzy varying coefficient regression model based on Huber loss function\",\"authors\":\"A. Khammar, M. Arefi, M. Akbari\",\"doi\":\"10.1109/CFIS49607.2020.9238742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized fuzzy regression model named fuzzy varying coefficient regression model is proposed by Shen et al. [14]. In this study, we introduce a fuzzy varying coefficient regression model based on Huber loss function and a kernel function. Unlike Shen et al.'s approach, the our approach is robust in the presence of outliers data. This advantage is examined by a numerical example.\",\"PeriodicalId\":128323,\"journal\":{\"name\":\"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CFIS49607.2020.9238742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CFIS49607.2020.9238742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Shen等人[14]提出了一种广义模糊回归模型,称为模糊变系数回归模型。本文提出了一种基于Huber损失函数和核函数的模糊变系数回归模型。与Shen等人的方法不同,我们的方法在存在异常值数据时是稳健的。通过数值算例验证了这一优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust fuzzy varying coefficient regression model based on Huber loss function
A generalized fuzzy regression model named fuzzy varying coefficient regression model is proposed by Shen et al. [14]. In this study, we introduce a fuzzy varying coefficient regression model based on Huber loss function and a kernel function. Unlike Shen et al.'s approach, the our approach is robust in the presence of outliers data. This advantage is examined by a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信