在多项式时间内检验乘法表示的等式

Guoqiang Ge
{"title":"在多项式时间内检验乘法表示的等式","authors":"Guoqiang Ge","doi":"10.1109/SFCS.1993.366845","DOIUrl":null,"url":null,"abstract":"For multiplicative representations /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ and /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/ where /spl alpha//sub i/, /spl beta//sub j/ are non-zero elements of some algebraic number field K and n/sub i/, m/sub j/ are rational integers, we present a deterministic polynomial time algorithm that decides whether /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ equals /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/. The running time of the algorithm is polynomial in the number of bits required to represent the number field K, the elements /spl alpha//sub i/, /spl beta//sub j/ and the integers n/sub i/, m/sub j/.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Testing equalities of multiplicative representations in polynomial time\",\"authors\":\"Guoqiang Ge\",\"doi\":\"10.1109/SFCS.1993.366845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multiplicative representations /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ and /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/ where /spl alpha//sub i/, /spl beta//sub j/ are non-zero elements of some algebraic number field K and n/sub i/, m/sub j/ are rational integers, we present a deterministic polynomial time algorithm that decides whether /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ equals /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/. The running time of the algorithm is polynomial in the number of bits required to represent the number field K, the elements /spl alpha//sub i/, /spl beta//sub j/ and the integers n/sub i/, m/sub j/.<<ETX>>\",\"PeriodicalId\":253303,\"journal\":{\"name\":\"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1993.366845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

对于乘法表示/spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/和/spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/其中/spl alpha//sub i/、/spl beta//sub j/是某些代数数域k的非零元素,而n/sub i/, m/sub j/是有理整数,我们提出了一种确定性多项式时间算法来决定/spl Pi//sub i/ =1//sup k//spl alpha//sub i//sup n(i)/是否等于/spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/。该算法的运行时间是表示数字字段K、元素/spl alpha//sub i/、/spl beta//sub j/和整数n/sub i/、m/sub j/.>所需的位数的多项式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing equalities of multiplicative representations in polynomial time
For multiplicative representations /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ and /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/ where /spl alpha//sub i/, /spl beta//sub j/ are non-zero elements of some algebraic number field K and n/sub i/, m/sub j/ are rational integers, we present a deterministic polynomial time algorithm that decides whether /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ equals /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/. The running time of the algorithm is polynomial in the number of bits required to represent the number field K, the elements /spl alpha//sub i/, /spl beta//sub j/ and the integers n/sub i/, m/sub j/.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信