非参数运动模型及其在摄像机运动模式分类中的应用

Ling-yu Duan, Mingliang Xu, Q. Tian, Changsheng Xu
{"title":"非参数运动模型及其在摄像机运动模式分类中的应用","authors":"Ling-yu Duan, Mingliang Xu, Q. Tian, Changsheng Xu","doi":"10.1145/1027527.1027603","DOIUrl":null,"url":null,"abstract":"Motion information is a powerful cue for visual perception. In the context of video indexing and retrieval, motion content serves as a useful source for compact video representation. There has been a lot of literature about parametric motion models. However, it is hard to secure a proper parametric assumption in a wide range of video scenarios. Diverse camera shots and frequent occurrences of bad optical flow estimation motivate us to develop nonparametric motion models. In this paper, we employ the mean shift procedure to propose a novel nonparametric motion representation. With this compact representation, various motion characterization tasks can be achieved by machine learning. Such a learning mechanism can not only capture the domain-independent parametric constraints, but also acquire the domain-dependent knowledge to tolerate the influence of bad dense optical flow vectors or block-based MPEG motion vector fields (MVF). The proposed nonparametric motion model has been applied to camera motion pattern classification on 23191 MVF extracted from MPEG-7 dataset.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Nonparametric motion model with applications to camera motion pattern classification\",\"authors\":\"Ling-yu Duan, Mingliang Xu, Q. Tian, Changsheng Xu\",\"doi\":\"10.1145/1027527.1027603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion information is a powerful cue for visual perception. In the context of video indexing and retrieval, motion content serves as a useful source for compact video representation. There has been a lot of literature about parametric motion models. However, it is hard to secure a proper parametric assumption in a wide range of video scenarios. Diverse camera shots and frequent occurrences of bad optical flow estimation motivate us to develop nonparametric motion models. In this paper, we employ the mean shift procedure to propose a novel nonparametric motion representation. With this compact representation, various motion characterization tasks can be achieved by machine learning. Such a learning mechanism can not only capture the domain-independent parametric constraints, but also acquire the domain-dependent knowledge to tolerate the influence of bad dense optical flow vectors or block-based MPEG motion vector fields (MVF). The proposed nonparametric motion model has been applied to camera motion pattern classification on 23191 MVF extracted from MPEG-7 dataset.\",\"PeriodicalId\":292207,\"journal\":{\"name\":\"MULTIMEDIA '04\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1027527.1027603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

运动信息是视觉感知的有力线索。在视频索引和检索的背景下,运动内容是压缩视频表示的有用来源。有很多关于参数化运动模型的文献。然而,在广泛的视频场景中,很难保证一个适当的参数假设。不同的相机镜头和频繁出现的不良光流估计促使我们开发非参数运动模型。本文采用均值移位法提出了一种新的非参数运动表示。有了这种紧凑的表示,各种运动表征任务可以通过机器学习来实现。这种学习机制不仅可以捕获与领域无关的参数约束,而且可以获得与领域相关的知识,以容忍不良的密集光流向量或基于块的MPEG运动向量场(MVF)的影响。将所提出的非参数运动模型应用于从MPEG-7数据集中提取的23191 MVF的摄像机运动模式分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric motion model with applications to camera motion pattern classification
Motion information is a powerful cue for visual perception. In the context of video indexing and retrieval, motion content serves as a useful source for compact video representation. There has been a lot of literature about parametric motion models. However, it is hard to secure a proper parametric assumption in a wide range of video scenarios. Diverse camera shots and frequent occurrences of bad optical flow estimation motivate us to develop nonparametric motion models. In this paper, we employ the mean shift procedure to propose a novel nonparametric motion representation. With this compact representation, various motion characterization tasks can be achieved by machine learning. Such a learning mechanism can not only capture the domain-independent parametric constraints, but also acquire the domain-dependent knowledge to tolerate the influence of bad dense optical flow vectors or block-based MPEG motion vector fields (MVF). The proposed nonparametric motion model has been applied to camera motion pattern classification on 23191 MVF extracted from MPEG-7 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信