λ tanz2族参数平面的组合结构

Santanu Nandi
{"title":"λ tanz2族参数平面的组合结构","authors":"Santanu Nandi","doi":"10.17654/DS033010001","DOIUrl":null,"url":null,"abstract":"In this article we will discuss combinatorial structure of the parameter plane of the family $ \\mathcal F = \\{ \\lambda \\tan z^2: \\lambda \\in \\mathbb C^*, \\ z \\in \\mathbb C\\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.","PeriodicalId":330387,"journal":{"name":"Far East Journal of Dynamical Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMBINATORIAL STRUCTURE OF THE PARAMETER PLANE OF THE FAMILY λ tan z2\",\"authors\":\"Santanu Nandi\",\"doi\":\"10.17654/DS033010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we will discuss combinatorial structure of the parameter plane of the family $ \\\\mathcal F = \\\\{ \\\\lambda \\\\tan z^2: \\\\lambda \\\\in \\\\mathbb C^*, \\\\ z \\\\in \\\\mathbb C\\\\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.\",\"PeriodicalId\":330387,\"journal\":{\"name\":\"Far East Journal of Dynamical Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far East Journal of Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/DS033010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/DS033010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们将讨论族的参数平面的组合结构$ \mathcal F = \{ \lambda \tan z^2: \lambda \in \mathbb C^*, \ z \in \mathbb C\}.$参数空间包含动力学在其Julia集合上共轭的分量。这些分量的补就是分岔轨迹。这些是双曲分量其中后单数集合与茱莉亚集合不相交。我们证明了除了周期为1的四个分量外,所有双曲分量都是有界的,并且它们都是单连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMBINATORIAL STRUCTURE OF THE PARAMETER PLANE OF THE FAMILY λ tan z2
In this article we will discuss combinatorial structure of the parameter plane of the family $ \mathcal F = \{ \lambda \tan z^2: \lambda \in \mathbb C^*, \ z \in \mathbb C\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信