{"title":"λ tanz2族参数平面的组合结构","authors":"Santanu Nandi","doi":"10.17654/DS033010001","DOIUrl":null,"url":null,"abstract":"In this article we will discuss combinatorial structure of the parameter plane of the family $ \\mathcal F = \\{ \\lambda \\tan z^2: \\lambda \\in \\mathbb C^*, \\ z \\in \\mathbb C\\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.","PeriodicalId":330387,"journal":{"name":"Far East Journal of Dynamical Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMBINATORIAL STRUCTURE OF THE PARAMETER PLANE OF THE FAMILY λ tan z2\",\"authors\":\"Santanu Nandi\",\"doi\":\"10.17654/DS033010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we will discuss combinatorial structure of the parameter plane of the family $ \\\\mathcal F = \\\\{ \\\\lambda \\\\tan z^2: \\\\lambda \\\\in \\\\mathbb C^*, \\\\ z \\\\in \\\\mathbb C\\\\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.\",\"PeriodicalId\":330387,\"journal\":{\"name\":\"Far East Journal of Dynamical Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far East Journal of Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/DS033010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/DS033010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在本文中,我们将讨论族的参数平面的组合结构$ \mathcal F = \{ \lambda \tan z^2: \lambda \in \mathbb C^*, \ z \in \mathbb C\}.$参数空间包含动力学在其Julia集合上共轭的分量。这些分量的补就是分岔轨迹。这些是双曲分量其中后单数集合与茱莉亚集合不相交。我们证明了除了周期为1的四个分量外,所有双曲分量都是有界的,并且它们都是单连通的。
COMBINATORIAL STRUCTURE OF THE PARAMETER PLANE OF THE FAMILY λ tan z2
In this article we will discuss combinatorial structure of the parameter plane of the family $ \mathcal F = \{ \lambda \tan z^2: \lambda \in \mathbb C^*, \ z \in \mathbb C\}.$ The parameter space contains components where the dynamics are conjugate on their Julia sets. The complement of these components is the bifurcation locus. These are the hyperbolic components where the post-singular set is disjoint from the Julia set. We prove that all hyperbolic components are bounded except the four components of period one and they are all simply connected.