{"title":"社交点播:基于社交特性的P2P系统","authors":"Wei Chang, Jie Wu","doi":"10.1109/ICPP.2015.66","DOIUrl":null,"url":null,"abstract":"Video-on-demand (VoD) service has been explosively growing since its first appearance. For maintaining an acceptable buffering delay, the bandwidth costs have become a huge burden for the service providers. Complementing the conventional client-server architecture with a peer-to-peer system(P2P) can significantly reduce the central server's bandwidth demands. However, the previous works focus on establishing a P2P overlay for each video, producing a high maintenance cost on users. Per-channel-based overlay construction was first introduced by Social Tube, which clusters the users subscribed to the same video channels into one P2P overlay. However, the current per-channel overlay structure is not suitable for users developing new watching preferences. Consider that a channel's subscribers tend to watch not only the videos from the channel, but also other videos from similar channels. In this paper, we propose a new overlay structure by exploring the existing social relations of users and the similarities of video channels. Our system creates a hierarchical overlay: subscribers of the same channel form the low-level overlay (also known as groups), and in high-level overlay, different groups are connected based on their similarities. The new structure has the small-world property, the existence of which has been found in most data-sharing patterns. Based on the new structure, we propose a routing algorithm for both channel subscribed and unsubscribed users. Extensive simulation results show the efficiency of our approach.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Social VoD: A Social Feature-Based P2P System\",\"authors\":\"Wei Chang, Jie Wu\",\"doi\":\"10.1109/ICPP.2015.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-on-demand (VoD) service has been explosively growing since its first appearance. For maintaining an acceptable buffering delay, the bandwidth costs have become a huge burden for the service providers. Complementing the conventional client-server architecture with a peer-to-peer system(P2P) can significantly reduce the central server's bandwidth demands. However, the previous works focus on establishing a P2P overlay for each video, producing a high maintenance cost on users. Per-channel-based overlay construction was first introduced by Social Tube, which clusters the users subscribed to the same video channels into one P2P overlay. However, the current per-channel overlay structure is not suitable for users developing new watching preferences. Consider that a channel's subscribers tend to watch not only the videos from the channel, but also other videos from similar channels. In this paper, we propose a new overlay structure by exploring the existing social relations of users and the similarities of video channels. Our system creates a hierarchical overlay: subscribers of the same channel form the low-level overlay (also known as groups), and in high-level overlay, different groups are connected based on their similarities. The new structure has the small-world property, the existence of which has been found in most data-sharing patterns. Based on the new structure, we propose a routing algorithm for both channel subscribed and unsubscribed users. Extensive simulation results show the efficiency of our approach.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video-on-demand (VoD) service has been explosively growing since its first appearance. For maintaining an acceptable buffering delay, the bandwidth costs have become a huge burden for the service providers. Complementing the conventional client-server architecture with a peer-to-peer system(P2P) can significantly reduce the central server's bandwidth demands. However, the previous works focus on establishing a P2P overlay for each video, producing a high maintenance cost on users. Per-channel-based overlay construction was first introduced by Social Tube, which clusters the users subscribed to the same video channels into one P2P overlay. However, the current per-channel overlay structure is not suitable for users developing new watching preferences. Consider that a channel's subscribers tend to watch not only the videos from the channel, but also other videos from similar channels. In this paper, we propose a new overlay structure by exploring the existing social relations of users and the similarities of video channels. Our system creates a hierarchical overlay: subscribers of the same channel form the low-level overlay (also known as groups), and in high-level overlay, different groups are connected based on their similarities. The new structure has the small-world property, the existence of which has been found in most data-sharing patterns. Based on the new structure, we propose a routing algorithm for both channel subscribed and unsubscribed users. Extensive simulation results show the efficiency of our approach.