基于像素统计和颜色的对比度失真非参考图像质量评估

Ying Huang, Bai‐Cheng Li, Meilan Jiang
{"title":"基于像素统计和颜色的对比度失真非参考图像质量评估","authors":"Ying Huang, Bai‐Cheng Li, Meilan Jiang","doi":"10.1145/3415048.3416106","DOIUrl":null,"url":null,"abstract":"For most natural images, proper contrast enhancement can achieve better visual quality. However, there are few image quality assessment methods for contrast distortion. We improve a new non-reference image quality assessment model to predict the image quality of contrast changes. Our improvements can be listed in two aspects:1. From the perspective of gray pixel information statistics, we add new perceptual features to the original model, including standard deviation, histogram energy, and skewness. These features enhance the prediction accuracy of the model. 2. Considering the effect of color on the contrast of the image, we extracted two key features related to the overall color of the image, named color saturation and colorfulness. Furthermore, support vector regression (SVR) is used to fuse all features to predict the image quality score, and we achieve better performance on three typical databases (CID2013, CCID2014, and CSIQ).","PeriodicalId":122511,"journal":{"name":"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-reference Image Quality Assessment for Contrast Distortion Based on Pixel Statistics and Color\",\"authors\":\"Ying Huang, Bai‐Cheng Li, Meilan Jiang\",\"doi\":\"10.1145/3415048.3416106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For most natural images, proper contrast enhancement can achieve better visual quality. However, there are few image quality assessment methods for contrast distortion. We improve a new non-reference image quality assessment model to predict the image quality of contrast changes. Our improvements can be listed in two aspects:1. From the perspective of gray pixel information statistics, we add new perceptual features to the original model, including standard deviation, histogram energy, and skewness. These features enhance the prediction accuracy of the model. 2. Considering the effect of color on the contrast of the image, we extracted two key features related to the overall color of the image, named color saturation and colorfulness. Furthermore, support vector regression (SVR) is used to fuse all features to predict the image quality score, and we achieve better performance on three typical databases (CID2013, CCID2014, and CSIQ).\",\"PeriodicalId\":122511,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3415048.3416106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415048.3416106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于大多数自然图像,适当的对比度增强可以获得更好的视觉质量。然而,针对对比度失真的图像质量评估方法很少。我们改进了一种新的非参考图像质量评估模型来预测对比度变化的图像质量。我们的改进可以列举在两个方面:1。从灰度像素信息统计的角度出发,在原有模型的基础上增加了新的感知特征,包括标准差、直方图能量、偏度等。这些特征提高了模型的预测精度。2. 考虑到颜色对图像对比度的影响,我们提取了与图像整体颜色相关的两个关键特征,即色彩饱和度和色彩度。此外,利用支持向量回归(SVR)融合所有特征来预测图像质量分数,我们在三个典型数据库(CID2013, CCID2014和CSIQ)上取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-reference Image Quality Assessment for Contrast Distortion Based on Pixel Statistics and Color
For most natural images, proper contrast enhancement can achieve better visual quality. However, there are few image quality assessment methods for contrast distortion. We improve a new non-reference image quality assessment model to predict the image quality of contrast changes. Our improvements can be listed in two aspects:1. From the perspective of gray pixel information statistics, we add new perceptual features to the original model, including standard deviation, histogram energy, and skewness. These features enhance the prediction accuracy of the model. 2. Considering the effect of color on the contrast of the image, we extracted two key features related to the overall color of the image, named color saturation and colorfulness. Furthermore, support vector regression (SVR) is used to fuse all features to predict the image quality score, and we achieve better performance on three typical databases (CID2013, CCID2014, and CSIQ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信