Zhirun Liu, Heyan Huang, Xiaochi Wei, Xian-Ling Mao
{"title":"三阶:异质学术网络中相互强化的权威排序框架","authors":"Zhirun Liu, Heyan Huang, Xiaochi Wei, Xian-Ling Mao","doi":"10.1109/ICTAI.2014.80","DOIUrl":null,"url":null,"abstract":"Recently, authority ranking has received increasing interests in both academia and industry, and it is applicable to many problems such as discovering influential nodes and building recommendation systems. Various graph-based ranking approaches like PageRank have been used to rank authors and papers separately in homogeneous networks. In this paper, we take venue information into consideration and propose a novel graph-based ranking framework, Tri-Rank, to co-rank authors, papers and venues simultaneously in heterogeneous networks. This approach is a flexible framework and it ranks authors, papers and venues iteratively in a mutually reinforcing way to achieve a more synthetic, fair ranking result. We conduct extensive experiments using the data collected from ACM Digital Library. The experimental results show that Tri-Rank is more effective and efficient than the state-of-the-art baselines including PageRank, HITS and Co-Rank in ranking authors. The papers and venues ranked by Tri-Rank also demonstrate that Tri-Rank is rational.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Tri-Rank: An Authority Ranking Framework in Heterogeneous Academic Networks by Mutual Reinforce\",\"authors\":\"Zhirun Liu, Heyan Huang, Xiaochi Wei, Xian-Ling Mao\",\"doi\":\"10.1109/ICTAI.2014.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, authority ranking has received increasing interests in both academia and industry, and it is applicable to many problems such as discovering influential nodes and building recommendation systems. Various graph-based ranking approaches like PageRank have been used to rank authors and papers separately in homogeneous networks. In this paper, we take venue information into consideration and propose a novel graph-based ranking framework, Tri-Rank, to co-rank authors, papers and venues simultaneously in heterogeneous networks. This approach is a flexible framework and it ranks authors, papers and venues iteratively in a mutually reinforcing way to achieve a more synthetic, fair ranking result. We conduct extensive experiments using the data collected from ACM Digital Library. The experimental results show that Tri-Rank is more effective and efficient than the state-of-the-art baselines including PageRank, HITS and Co-Rank in ranking authors. The papers and venues ranked by Tri-Rank also demonstrate that Tri-Rank is rational.\",\"PeriodicalId\":142794,\"journal\":{\"name\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2014.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tri-Rank: An Authority Ranking Framework in Heterogeneous Academic Networks by Mutual Reinforce
Recently, authority ranking has received increasing interests in both academia and industry, and it is applicable to many problems such as discovering influential nodes and building recommendation systems. Various graph-based ranking approaches like PageRank have been used to rank authors and papers separately in homogeneous networks. In this paper, we take venue information into consideration and propose a novel graph-based ranking framework, Tri-Rank, to co-rank authors, papers and venues simultaneously in heterogeneous networks. This approach is a flexible framework and it ranks authors, papers and venues iteratively in a mutually reinforcing way to achieve a more synthetic, fair ranking result. We conduct extensive experiments using the data collected from ACM Digital Library. The experimental results show that Tri-Rank is more effective and efficient than the state-of-the-art baselines including PageRank, HITS and Co-Rank in ranking authors. The papers and venues ranked by Tri-Rank also demonstrate that Tri-Rank is rational.