一种挖掘统计显著频繁项集的有效方法

P. Stanisic, S. Tomovic
{"title":"一种挖掘统计显著频繁项集的有效方法","authors":"P. Stanisic, S. Tomovic","doi":"10.2298/PIM1001109S","DOIUrl":null,"url":null,"abstract":"We suggest the original procedure for frequent itemsets generation, which is more efficient than the appropriate procedure of the well known Apriori algorithm. The correctness of the procedure is based on a special structure called Rymon tree. For its implementation, we suggest a modified sort-merge-join algorithm. Finally, we explain how the support measure, which is used in Apriori algorithm, gives statistically significant frequent itemsets.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient procedure for mining statistically significant frequent itemsets\",\"authors\":\"P. Stanisic, S. Tomovic\",\"doi\":\"10.2298/PIM1001109S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We suggest the original procedure for frequent itemsets generation, which is more efficient than the appropriate procedure of the well known Apriori algorithm. The correctness of the procedure is based on a special structure called Rymon tree. For its implementation, we suggest a modified sort-merge-join algorithm. Finally, we explain how the support measure, which is used in Apriori algorithm, gives statistically significant frequent itemsets.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1001109S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1001109S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了原始的频繁项集生成过程,该过程比已知的Apriori算法的适当过程更有效。该程序的正确性是基于一个特殊的结构,称为赖蒙树。对于其实现,我们提出了一种改进的排序-合并-连接算法。最后,我们解释了在Apriori算法中使用的支持度量如何给出统计显著的频繁项集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient procedure for mining statistically significant frequent itemsets
We suggest the original procedure for frequent itemsets generation, which is more efficient than the appropriate procedure of the well known Apriori algorithm. The correctness of the procedure is based on a special structure called Rymon tree. For its implementation, we suggest a modified sort-merge-join algorithm. Finally, we explain how the support measure, which is used in Apriori algorithm, gives statistically significant frequent itemsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信