基于噪声模型的粒子滤波定位

Incheol Kim, Seung-Yeon Kim, HyeSuk Kim
{"title":"基于噪声模型的粒子滤波定位","authors":"Incheol Kim, Seung-Yeon Kim, HyeSuk Kim","doi":"10.3745/KIPSTB.2012.19B.1.027","DOIUrl":null,"url":null,"abstract":"One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are the most effective one of the probabilistic localization methods, and then present the result of experiments for evaluating the performance of our system. Through conducting experiments to compare the effect of the noise-free model with that of the noisy state transition model considering inherent errors of robot actions, we show that it can help improve the performance of the Particle filter localization to apply a state transition model closely approximating the uncertainty of real robot actions.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Particle Filter Localization Using Noisy Models\",\"authors\":\"Incheol Kim, Seung-Yeon Kim, HyeSuk Kim\",\"doi\":\"10.3745/KIPSTB.2012.19B.1.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are the most effective one of the probabilistic localization methods, and then present the result of experiments for evaluating the performance of our system. Through conducting experiments to compare the effect of the noise-free model with that of the noisy state transition model considering inherent errors of robot actions, we show that it can help improve the performance of the Particle filter localization to apply a state transition model closely approximating the uncertainty of real robot actions.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2012.19B.1.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.1.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

智能体最基本的功能之一是根据不确定的传感器数据估计其当前位置。本文介绍了利用概率定位方法中最有效的粒子滤波实现机器人定位系统,并给出了实验结果来评价系统的性能。通过实验比较了无噪声模型与考虑机器人动作固有误差的有噪声状态转移模型的效果,我们发现采用接近真实机器人动作不确定性的状态转移模型有助于提高粒子滤波定位的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Filter Localization Using Noisy Models
One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are the most effective one of the probabilistic localization methods, and then present the result of experiments for evaluating the performance of our system. Through conducting experiments to compare the effect of the noise-free model with that of the noisy state transition model considering inherent errors of robot actions, we show that it can help improve the performance of the Particle filter localization to apply a state transition model closely approximating the uncertainty of real robot actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信