基于草图熵估计的可编程数据平面asic网络流量分析

Yu-Kuen Lai, Ku-Yeh Shih, Po-Yu Huang, Ho-Ping Lee, Yu-Jau Lin, Te-Lung Liu, J. Chen
{"title":"基于草图熵估计的可编程数据平面asic网络流量分析","authors":"Yu-Kuen Lai, Ku-Yeh Shih, Po-Yu Huang, Ho-Ping Lee, Yu-Jau Lin, Te-Lung Liu, J. Chen","doi":"10.1109/ANCS.2019.8901888","DOIUrl":null,"url":null,"abstract":"Entropy can be used as a measure of concentration and dispersion on a particular header space for network traffic analysis. This work presents the implementation of a sketch-based entropy estimation on programmable data plane ASICs using P4. The estimation scheme, proposed by Clifford and Cosma, leverages the random projection of a maximally skewed stable distribution. On top of a Barefoot Tofino switch, this work transforms the complex computations of the random projection into fast lookup over pre-computed tables in the match-action pipeline. Performance is evaluated based on real-world network traffic traces. Minimum-sized Ethernet frames are generated by hardware traffic generator with pre-defined distributions. The system can estimate the entropy of network traffic accurately at full wire-speed of 100 Gbps throughput.","PeriodicalId":405320,"journal":{"name":"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"12 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sketch-based Entropy Estimation for Network Traffic Analysis using Programmable Data Plane ASICs\",\"authors\":\"Yu-Kuen Lai, Ku-Yeh Shih, Po-Yu Huang, Ho-Ping Lee, Yu-Jau Lin, Te-Lung Liu, J. Chen\",\"doi\":\"10.1109/ANCS.2019.8901888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entropy can be used as a measure of concentration and dispersion on a particular header space for network traffic analysis. This work presents the implementation of a sketch-based entropy estimation on programmable data plane ASICs using P4. The estimation scheme, proposed by Clifford and Cosma, leverages the random projection of a maximally skewed stable distribution. On top of a Barefoot Tofino switch, this work transforms the complex computations of the random projection into fast lookup over pre-computed tables in the match-action pipeline. Performance is evaluated based on real-world network traffic traces. Minimum-sized Ethernet frames are generated by hardware traffic generator with pre-defined distributions. The system can estimate the entropy of network traffic accurately at full wire-speed of 100 Gbps throughput.\",\"PeriodicalId\":405320,\"journal\":{\"name\":\"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"volume\":\"12 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANCS.2019.8901888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANCS.2019.8901888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

熵可以用作网络流量分析中特定报头空间上的集中和分散的度量。本文介绍了在可编程数据平面asic上使用P4实现基于草图的熵估计。由Clifford和Cosma提出的估计方案利用了最大偏斜稳定分布的随机投影。在Barefoot Tofino开关的顶部,这项工作将随机投影的复杂计算转换为匹配-动作管道中预先计算的表的快速查找。性能是基于真实的网络流量跟踪来评估的。最小尺寸的以太网帧由具有预定义分布的硬件流量生成器生成。该系统可以在100gbps吞吐量的全线速度下准确估计网络流量熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sketch-based Entropy Estimation for Network Traffic Analysis using Programmable Data Plane ASICs
Entropy can be used as a measure of concentration and dispersion on a particular header space for network traffic analysis. This work presents the implementation of a sketch-based entropy estimation on programmable data plane ASICs using P4. The estimation scheme, proposed by Clifford and Cosma, leverages the random projection of a maximally skewed stable distribution. On top of a Barefoot Tofino switch, this work transforms the complex computations of the random projection into fast lookup over pre-computed tables in the match-action pipeline. Performance is evaluated based on real-world network traffic traces. Minimum-sized Ethernet frames are generated by hardware traffic generator with pre-defined distributions. The system can estimate the entropy of network traffic accurately at full wire-speed of 100 Gbps throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信