Haykal Abidin, N. Chandra, Mohammad Syaiful Pradana
{"title":"Pemodelan Regresi Cox Proportional Hazard Pada Data Perceraian","authors":"Haykal Abidin, N. Chandra, Mohammad Syaiful Pradana","doi":"10.52166/ujmc.v6i2.2393","DOIUrl":null,"url":null,"abstract":"The purpose of this research is modeling the Cox proportional hazard regression form on divorce data in Pelaihari sub-district, Tanah Laut district, South Kalimantan province. The source of the data comes from the Court Decision in Pelaihari District, Tanah Laut Regency, South Kalimantan. The data analysis technique uses software R with the steps, namely data description, Log-Rank test, checking proportional hazard assumptions, Cox regression model parameter estimation, backward selection with AIC, the best model parameter significance test, calculating Hazard ratio and interpretation of each predictor variable. Based on the results of the analysis and discussion, it was found that for the Log-Rank test, the variable survival time for domestic violence, forced marriage, lying and stories of disgrace differed significantly. While the model that meets the criteria after iteration up to 15 times is the 15th model with the smallest AIC value and p-value <0.05 with factors that significantly influence divorce in Pelaihari sub-district based on modeling results using Cox proportional Hazard regression. are the variables of cheating, gambling, domestic violence, forced marriage, lies, jealousy and disgrace story variables","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unisda Journal of Mathematics and Computer Science (UJMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52166/ujmc.v6i2.2393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是对南加里曼丹省Tanah Laut县Pelaihari街道的离婚数据进行Cox比例风险回归建模。数据来源来自南加里曼丹Tanah Laut摄政Pelaihari区的法院判决。数据分析技术采用R软件进行数据描述、Log-Rank检验、比例风险假设检验、Cox回归模型参数估计、AIC逆向选择、最佳模型参数显著性检验、计算风险比和各预测变量解释等步骤。根据分析和讨论的结果,在Log-Rank检验中,家庭暴力、强迫婚姻、撒谎和耻辱故事的变量生存时间差异显著。而根据Cox比例风险回归的建模结果,迭代15次后符合标准的模型是第15个AIC值最小且p值<0.05的模型,其显著影响Pelaihari街道离婚的因素。欺骗、赌博、家庭暴力、强迫婚姻、谎言、嫉妒和耻辱故事的变量是变量吗
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pemodelan Regresi Cox Proportional Hazard Pada Data Perceraian
The purpose of this research is modeling the Cox proportional hazard regression form on divorce data in Pelaihari sub-district, Tanah Laut district, South Kalimantan province. The source of the data comes from the Court Decision in Pelaihari District, Tanah Laut Regency, South Kalimantan. The data analysis technique uses software R with the steps, namely data description, Log-Rank test, checking proportional hazard assumptions, Cox regression model parameter estimation, backward selection with AIC, the best model parameter significance test, calculating Hazard ratio and interpretation of each predictor variable. Based on the results of the analysis and discussion, it was found that for the Log-Rank test, the variable survival time for domestic violence, forced marriage, lying and stories of disgrace differed significantly. While the model that meets the criteria after iteration up to 15 times is the 15th model with the smallest AIC value and p-value <0.05 with factors that significantly influence divorce in Pelaihari sub-district based on modeling results using Cox proportional Hazard regression. are the variables of cheating, gambling, domestic violence, forced marriage, lies, jealousy and disgrace story variables
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信