图神经网络学习推特机器人行为

Albert Orozco, Sacha Lévy, Reihaneh Rabbany
{"title":"图神经网络学习推特机器人行为","authors":"Albert Orozco, Sacha Lévy, Reihaneh Rabbany","doi":"10.52591/lxai2020121213","DOIUrl":null,"url":null,"abstract":"Social media trends are increasingly taking a significant role for the understanding of modern social dynamics. In this work, we take a look at how the Twitter landscape gets constantly shaped by automatically generated content. Twitter bot activity can be traced via network abstractions which, we hypothesize, can be learned through state-of-the-art graph neural network techniques. We employ a large bot database, continuously updated by Twitter, to learn how likely is that a user is mentioned by a bot, as well as, for a hashtag. Thus, we model this likelihood as a link prediction task between the set of users and hashtags. Moreover, we contrast our results by performing similar experiments on a crawled data set of real users.","PeriodicalId":301818,"journal":{"name":"LatinX in AI at Neural Information Processing Systems Conference 2020","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Neural Networks Learn Twitter Bot Behaviour\",\"authors\":\"Albert Orozco, Sacha Lévy, Reihaneh Rabbany\",\"doi\":\"10.52591/lxai2020121213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media trends are increasingly taking a significant role for the understanding of modern social dynamics. In this work, we take a look at how the Twitter landscape gets constantly shaped by automatically generated content. Twitter bot activity can be traced via network abstractions which, we hypothesize, can be learned through state-of-the-art graph neural network techniques. We employ a large bot database, continuously updated by Twitter, to learn how likely is that a user is mentioned by a bot, as well as, for a hashtag. Thus, we model this likelihood as a link prediction task between the set of users and hashtags. Moreover, we contrast our results by performing similar experiments on a crawled data set of real users.\",\"PeriodicalId\":301818,\"journal\":{\"name\":\"LatinX in AI at Neural Information Processing Systems Conference 2020\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at Neural Information Processing Systems Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai2020121213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at Neural Information Processing Systems Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai2020121213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体趋势在理解现代社会动态方面发挥着越来越重要的作用。在这项工作中,我们来看看Twitter的景观是如何被自动生成的内容不断塑造的。Twitter机器人的活动可以通过网络抽象来追踪,我们假设,网络抽象可以通过最先进的图神经网络技术来学习。我们使用了一个由Twitter不断更新的大型机器人数据库,以了解机器人提到用户的可能性,以及标签的可能性。因此,我们将这种可能性建模为用户集和标签之间的链接预测任务。此外,我们通过在抓取的真实用户数据集上执行类似的实验来对比我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Neural Networks Learn Twitter Bot Behaviour
Social media trends are increasingly taking a significant role for the understanding of modern social dynamics. In this work, we take a look at how the Twitter landscape gets constantly shaped by automatically generated content. Twitter bot activity can be traced via network abstractions which, we hypothesize, can be learned through state-of-the-art graph neural network techniques. We employ a large bot database, continuously updated by Twitter, to learn how likely is that a user is mentioned by a bot, as well as, for a hashtag. Thus, we model this likelihood as a link prediction task between the set of users and hashtags. Moreover, we contrast our results by performing similar experiments on a crawled data set of real users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信