基于回声状态网络的连续多模态人类影响估计

Mohammadreza Amirian, Markus Kächele, Patrick Thiam, Viktor Kessler, F. Schwenker
{"title":"基于回声状态网络的连续多模态人类影响估计","authors":"Mohammadreza Amirian, Markus Kächele, Patrick Thiam, Viktor Kessler, F. Schwenker","doi":"10.1145/2988257.2988260","DOIUrl":null,"url":null,"abstract":"A continuous multimodal human affect recognition for both arousal and valence dimensions in a non-acted spontaneous scenario is investigated in this paper. Different regression models based on Random Forests and Echo State Networks are evaluated and compared in terms of robustness and accuracy. Moreover, an extension of Echo State Networks to a bi-directional model is introduced to improve the regression accuracy. A hybrid method using Random Forests, Echo State Networks and linear regression fusion is developed and applied on the test subset of the AVEC16 challenge. Finally, the label shift and prediction delay is discussed and an annotator specific regression model, as well as fusion architecture, is proposed for future work.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Continuous Multimodal Human Affect Estimation using Echo State Networks\",\"authors\":\"Mohammadreza Amirian, Markus Kächele, Patrick Thiam, Viktor Kessler, F. Schwenker\",\"doi\":\"10.1145/2988257.2988260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous multimodal human affect recognition for both arousal and valence dimensions in a non-acted spontaneous scenario is investigated in this paper. Different regression models based on Random Forests and Echo State Networks are evaluated and compared in terms of robustness and accuracy. Moreover, an extension of Echo State Networks to a bi-directional model is introduced to improve the regression accuracy. A hybrid method using Random Forests, Echo State Networks and linear regression fusion is developed and applied on the test subset of the AVEC16 challenge. Finally, the label shift and prediction delay is discussed and an annotator specific regression model, as well as fusion architecture, is proposed for future work.\",\"PeriodicalId\":432793,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988257.2988260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了非行为自发情景下的连续多模态情感识别,包括唤醒维度和效价维度。对基于随机森林和回声状态网络的不同回归模型的鲁棒性和准确性进行了评价和比较。此外,将回声状态网络扩展为双向模型,提高了回归精度。提出了一种基于随机森林、回声状态网络和线性回归融合的混合方法,并将其应用于AVEC16挑战的测试子集。最后,讨论了标签漂移和预测延迟,并提出了针对标注器的回归模型和融合体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Multimodal Human Affect Estimation using Echo State Networks
A continuous multimodal human affect recognition for both arousal and valence dimensions in a non-acted spontaneous scenario is investigated in this paper. Different regression models based on Random Forests and Echo State Networks are evaluated and compared in terms of robustness and accuracy. Moreover, an extension of Echo State Networks to a bi-directional model is introduced to improve the regression accuracy. A hybrid method using Random Forests, Echo State Networks and linear regression fusion is developed and applied on the test subset of the AVEC16 challenge. Finally, the label shift and prediction delay is discussed and an annotator specific regression model, as well as fusion architecture, is proposed for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信