{"title":"开关设备先发制人的电弧故障检测技术——第三部分,从实验室到实际安装","authors":"G. Hussain, M. Shafiq, J. Kay, M. Lehtonen","doi":"10.1109/PCICON.2014.6961905","DOIUrl":null,"url":null,"abstract":"Major types of slowly developing faults, which can lead to arc faults in switchgear and control gear, such as partial discharge (PD), arcing and heating due to poor connections, can now be successfully detected and monitored. In part I and II of this paper series, a detailed review of the immediate causes of arc faults, along with an overview of pre-ignition and post-ignition methods for its mitigation were presented. Various hybrid non-intrusive sensors were developed in the laboratory to implement pre-ignition detection techniques. The major types of slowly developing electrical faults were created in the laboratory and the sensors were employed to evaluate their performance along with an effective signal processing technique. Part III of the work is based on the successful performance of the sensors outside of laboratory conditions. Hybrid sensors have been installed in a real world application, i.e. switchgear located in substations. This paper presents interesting results about this practical application, and includes valuable discussion on the performance evaluation of different sensors, which further justifies the usefulness of the new sensors for online condition monitoring of switchgear, controlgear and cable termination boxes. The implementation of this technology in industry may provide promising results in avoiding major accidents such as arc flash in switchgear and controlgear.","PeriodicalId":264800,"journal":{"name":"2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pre-emptive arc fault detection techniques in switchgear-part III, from the laboratory to practical installation\",\"authors\":\"G. Hussain, M. Shafiq, J. Kay, M. Lehtonen\",\"doi\":\"10.1109/PCICON.2014.6961905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major types of slowly developing faults, which can lead to arc faults in switchgear and control gear, such as partial discharge (PD), arcing and heating due to poor connections, can now be successfully detected and monitored. In part I and II of this paper series, a detailed review of the immediate causes of arc faults, along with an overview of pre-ignition and post-ignition methods for its mitigation were presented. Various hybrid non-intrusive sensors were developed in the laboratory to implement pre-ignition detection techniques. The major types of slowly developing electrical faults were created in the laboratory and the sensors were employed to evaluate their performance along with an effective signal processing technique. Part III of the work is based on the successful performance of the sensors outside of laboratory conditions. Hybrid sensors have been installed in a real world application, i.e. switchgear located in substations. This paper presents interesting results about this practical application, and includes valuable discussion on the performance evaluation of different sensors, which further justifies the usefulness of the new sensors for online condition monitoring of switchgear, controlgear and cable termination boxes. The implementation of this technology in industry may provide promising results in avoiding major accidents such as arc flash in switchgear and controlgear.\",\"PeriodicalId\":264800,\"journal\":{\"name\":\"2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCICON.2014.6961905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCICON.2014.6961905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pre-emptive arc fault detection techniques in switchgear-part III, from the laboratory to practical installation
Major types of slowly developing faults, which can lead to arc faults in switchgear and control gear, such as partial discharge (PD), arcing and heating due to poor connections, can now be successfully detected and monitored. In part I and II of this paper series, a detailed review of the immediate causes of arc faults, along with an overview of pre-ignition and post-ignition methods for its mitigation were presented. Various hybrid non-intrusive sensors were developed in the laboratory to implement pre-ignition detection techniques. The major types of slowly developing electrical faults were created in the laboratory and the sensors were employed to evaluate their performance along with an effective signal processing technique. Part III of the work is based on the successful performance of the sensors outside of laboratory conditions. Hybrid sensors have been installed in a real world application, i.e. switchgear located in substations. This paper presents interesting results about this practical application, and includes valuable discussion on the performance evaluation of different sensors, which further justifies the usefulness of the new sensors for online condition monitoring of switchgear, controlgear and cable termination boxes. The implementation of this technology in industry may provide promising results in avoiding major accidents such as arc flash in switchgear and controlgear.