{"title":"广义自由度","authors":"Shu-Ping Hu","doi":"10.1080/1941658X.2016.1191388","DOIUrl":null,"url":null,"abstract":"Two popular regression methods for the multiplicative-error model are the Minimum-Unbiased-Percent Error and Minimum-Percentage Error under the Zero-Percentage Bias methods. The Minimum-Unbiased-Percent Error method, an Iteratively Reweighted Least Squares regression, does not use any constraints, while the Minimum-Percentage Error under the Zero-Percentage Bias method requires a constraint as part of the curve-fitting process. However, Minimum-Percentage Error under the Zero-Percentage Bias users do not adjust the degrees of freedom to account for constraints included in the regression process. As a result, fit statistics for the Minimum-Percentage Error under the Zero-Percentage bias equations, e.g., the standard percent error and generalized R2, can be incorrect and misleading. This results in incompatible fit statistics between Minimum-Percentage Error under the Zero-Percentage Bias and Minimum-Unbiased-Percent Error equations. This article details why degrees of freedom should be adjusted and recommends a Generalized Degrees of Freedom measure to calculate fit statistics for constraint-driven cost estimating relationships. It also explains why Minimum-Percentage Error under the Zero-Percentage Bias’s standard error underestimates the spread of the cost estimating relationship error distribution. Illustrative examples are provided. Note that this article only considers equality constraints; Generalized Degrees of Freedom for inequality constraints is another topic.","PeriodicalId":390877,"journal":{"name":"Journal of Cost Analysis and Parametrics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generalized Degrees of Freedom\",\"authors\":\"Shu-Ping Hu\",\"doi\":\"10.1080/1941658X.2016.1191388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two popular regression methods for the multiplicative-error model are the Minimum-Unbiased-Percent Error and Minimum-Percentage Error under the Zero-Percentage Bias methods. The Minimum-Unbiased-Percent Error method, an Iteratively Reweighted Least Squares regression, does not use any constraints, while the Minimum-Percentage Error under the Zero-Percentage Bias method requires a constraint as part of the curve-fitting process. However, Minimum-Percentage Error under the Zero-Percentage Bias users do not adjust the degrees of freedom to account for constraints included in the regression process. As a result, fit statistics for the Minimum-Percentage Error under the Zero-Percentage bias equations, e.g., the standard percent error and generalized R2, can be incorrect and misleading. This results in incompatible fit statistics between Minimum-Percentage Error under the Zero-Percentage Bias and Minimum-Unbiased-Percent Error equations. This article details why degrees of freedom should be adjusted and recommends a Generalized Degrees of Freedom measure to calculate fit statistics for constraint-driven cost estimating relationships. It also explains why Minimum-Percentage Error under the Zero-Percentage Bias’s standard error underestimates the spread of the cost estimating relationship error distribution. Illustrative examples are provided. Note that this article only considers equality constraints; Generalized Degrees of Freedom for inequality constraints is another topic.\",\"PeriodicalId\":390877,\"journal\":{\"name\":\"Journal of Cost Analysis and Parametrics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cost Analysis and Parametrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1941658X.2016.1191388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cost Analysis and Parametrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1941658X.2016.1191388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two popular regression methods for the multiplicative-error model are the Minimum-Unbiased-Percent Error and Minimum-Percentage Error under the Zero-Percentage Bias methods. The Minimum-Unbiased-Percent Error method, an Iteratively Reweighted Least Squares regression, does not use any constraints, while the Minimum-Percentage Error under the Zero-Percentage Bias method requires a constraint as part of the curve-fitting process. However, Minimum-Percentage Error under the Zero-Percentage Bias users do not adjust the degrees of freedom to account for constraints included in the regression process. As a result, fit statistics for the Minimum-Percentage Error under the Zero-Percentage bias equations, e.g., the standard percent error and generalized R2, can be incorrect and misleading. This results in incompatible fit statistics between Minimum-Percentage Error under the Zero-Percentage Bias and Minimum-Unbiased-Percent Error equations. This article details why degrees of freedom should be adjusted and recommends a Generalized Degrees of Freedom measure to calculate fit statistics for constraint-driven cost estimating relationships. It also explains why Minimum-Percentage Error under the Zero-Percentage Bias’s standard error underestimates the spread of the cost estimating relationship error distribution. Illustrative examples are provided. Note that this article only considers equality constraints; Generalized Degrees of Freedom for inequality constraints is another topic.