广义自由度

Shu-Ping Hu
{"title":"广义自由度","authors":"Shu-Ping Hu","doi":"10.1080/1941658X.2016.1191388","DOIUrl":null,"url":null,"abstract":"Two popular regression methods for the multiplicative-error model are the Minimum-Unbiased-Percent Error and Minimum-Percentage Error under the Zero-Percentage Bias methods. The Minimum-Unbiased-Percent Error method, an Iteratively Reweighted Least Squares regression, does not use any constraints, while the Minimum-Percentage Error under the Zero-Percentage Bias method requires a constraint as part of the curve-fitting process. However, Minimum-Percentage Error under the Zero-Percentage Bias users do not adjust the degrees of freedom to account for constraints included in the regression process. As a result, fit statistics for the Minimum-Percentage Error under the Zero-Percentage bias equations, e.g., the standard percent error and generalized R2, can be incorrect and misleading. This results in incompatible fit statistics between Minimum-Percentage Error under the Zero-Percentage Bias and Minimum-Unbiased-Percent Error equations. This article details why degrees of freedom should be adjusted and recommends a Generalized Degrees of Freedom measure to calculate fit statistics for constraint-driven cost estimating relationships. It also explains why Minimum-Percentage Error under the Zero-Percentage Bias’s standard error underestimates the spread of the cost estimating relationship error distribution. Illustrative examples are provided. Note that this article only considers equality constraints; Generalized Degrees of Freedom for inequality constraints is another topic.","PeriodicalId":390877,"journal":{"name":"Journal of Cost Analysis and Parametrics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generalized Degrees of Freedom\",\"authors\":\"Shu-Ping Hu\",\"doi\":\"10.1080/1941658X.2016.1191388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two popular regression methods for the multiplicative-error model are the Minimum-Unbiased-Percent Error and Minimum-Percentage Error under the Zero-Percentage Bias methods. The Minimum-Unbiased-Percent Error method, an Iteratively Reweighted Least Squares regression, does not use any constraints, while the Minimum-Percentage Error under the Zero-Percentage Bias method requires a constraint as part of the curve-fitting process. However, Minimum-Percentage Error under the Zero-Percentage Bias users do not adjust the degrees of freedom to account for constraints included in the regression process. As a result, fit statistics for the Minimum-Percentage Error under the Zero-Percentage bias equations, e.g., the standard percent error and generalized R2, can be incorrect and misleading. This results in incompatible fit statistics between Minimum-Percentage Error under the Zero-Percentage Bias and Minimum-Unbiased-Percent Error equations. This article details why degrees of freedom should be adjusted and recommends a Generalized Degrees of Freedom measure to calculate fit statistics for constraint-driven cost estimating relationships. It also explains why Minimum-Percentage Error under the Zero-Percentage Bias’s standard error underestimates the spread of the cost estimating relationship error distribution. Illustrative examples are provided. Note that this article only considers equality constraints; Generalized Degrees of Freedom for inequality constraints is another topic.\",\"PeriodicalId\":390877,\"journal\":{\"name\":\"Journal of Cost Analysis and Parametrics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cost Analysis and Parametrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1941658X.2016.1191388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cost Analysis and Parametrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1941658X.2016.1191388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

两种常用的乘法误差模型回归方法是零百分比偏差方法下的最小无偏百分比误差和最小百分比误差。最小无偏百分比误差方法是一种迭代加权最小二乘回归,它不使用任何约束,而零百分比偏差方法下的最小百分比误差需要约束作为曲线拟合过程的一部分。然而,在零百分比偏差下的最小百分比误差用户不调整自由度来考虑回归过程中包含的约束。因此,零百分比偏差方程下的最小百分比误差的拟合统计量,例如标准百分比误差和广义R2,可能是不正确的和误导性的。这导致在零百分比偏差下的最小百分比误差和最小无偏百分比误差方程之间的拟合统计不相容。本文详细说明了为什么应该调整自由度,并推荐了一种广义自由度度量来计算约束驱动的成本估算关系的拟合统计。这也解释了为什么零百分比偏差标准误差下的最小百分比误差低估了成本估计关系误差分布的扩散。提供了说明性示例。请注意,本文只考虑相等约束;不等式约束的广义自由度是另一个主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Degrees of Freedom
Two popular regression methods for the multiplicative-error model are the Minimum-Unbiased-Percent Error and Minimum-Percentage Error under the Zero-Percentage Bias methods. The Minimum-Unbiased-Percent Error method, an Iteratively Reweighted Least Squares regression, does not use any constraints, while the Minimum-Percentage Error under the Zero-Percentage Bias method requires a constraint as part of the curve-fitting process. However, Minimum-Percentage Error under the Zero-Percentage Bias users do not adjust the degrees of freedom to account for constraints included in the regression process. As a result, fit statistics for the Minimum-Percentage Error under the Zero-Percentage bias equations, e.g., the standard percent error and generalized R2, can be incorrect and misleading. This results in incompatible fit statistics between Minimum-Percentage Error under the Zero-Percentage Bias and Minimum-Unbiased-Percent Error equations. This article details why degrees of freedom should be adjusted and recommends a Generalized Degrees of Freedom measure to calculate fit statistics for constraint-driven cost estimating relationships. It also explains why Minimum-Percentage Error under the Zero-Percentage Bias’s standard error underestimates the spread of the cost estimating relationship error distribution. Illustrative examples are provided. Note that this article only considers equality constraints; Generalized Degrees of Freedom for inequality constraints is another topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信