{"title":"分离多项式及其导数的紧根的定理","authors":"Tateaki Sasaki","doi":"10.1145/1040034.1040039","DOIUrl":null,"url":null,"abstract":"Let <i>P</i>(<i>z</i>) be a univariate polynomial over <b>C</b>, having <i>m</i> close roots around the origin. We present a theorem which separates a cluster of <i>m - k</i> close roots of <i>d<sup>k</sup> P</i>/d<i>z<sup>k</sup></i> around the origin from the other roots, where 0 ≤ <i>k</i> < <i>m</i>. We compare our theorem with those of Marden-Walsh and Yakoubsohn, and show superiority of our theorem.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A theorem for separating close roots of a polynomial and its derivatives\",\"authors\":\"Tateaki Sasaki\",\"doi\":\"10.1145/1040034.1040039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>P</i>(<i>z</i>) be a univariate polynomial over <b>C</b>, having <i>m</i> close roots around the origin. We present a theorem which separates a cluster of <i>m - k</i> close roots of <i>d<sup>k</sup> P</i>/d<i>z<sup>k</sup></i> around the origin from the other roots, where 0 ≤ <i>k</i> < <i>m</i>. We compare our theorem with those of Marden-Walsh and Yakoubsohn, and show superiority of our theorem.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1040034.1040039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1040034.1040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A theorem for separating close roots of a polynomial and its derivatives
Let P(z) be a univariate polynomial over C, having m close roots around the origin. We present a theorem which separates a cluster of m - k close roots of dk P/dzk around the origin from the other roots, where 0 ≤ k < m. We compare our theorem with those of Marden-Walsh and Yakoubsohn, and show superiority of our theorem.