基于mse的CLS和TLS估计中秩确定的正则化方法

H. Kagiwada, Y. Aoki, J. Xin, A. Sano
{"title":"基于mse的CLS和TLS估计中秩确定的正则化方法","authors":"H. Kagiwada, Y. Aoki, J. Xin, A. Sano","doi":"10.5281/ZENODO.35974","DOIUrl":null,"url":null,"abstract":"The corrected least squares (CLS) approach using an over-determined model is investigated to decide the number of sinusoids in additive white noise. Like the total least squares (TLS) approach, the CLS estimation is different from the ordinary least squares (LS) method in that the noise variance is subtracted from the diagonal elements of the correlation matrix of the noisy observed data. Therefore the inversion of the resultant matrix becomes ill-conditioned and then adequate truncation of the eigenvalue decomposition (EVD) should be done. This paper clarifies how to simultaneously estimate the noise variance and truncate the eigenvalues, since they are mutually dependent. By introducing a multiple number of regularization parameters and determining them to minimize the MSE of the model parameters, we can give an optimal scheme for the truncation of eigenvalues. Furthermore, an iterative algorithm using only observed data is also clarified.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSE-based regularization approach to rank determination in CLS and TLS estimation\",\"authors\":\"H. Kagiwada, Y. Aoki, J. Xin, A. Sano\",\"doi\":\"10.5281/ZENODO.35974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The corrected least squares (CLS) approach using an over-determined model is investigated to decide the number of sinusoids in additive white noise. Like the total least squares (TLS) approach, the CLS estimation is different from the ordinary least squares (LS) method in that the noise variance is subtracted from the diagonal elements of the correlation matrix of the noisy observed data. Therefore the inversion of the resultant matrix becomes ill-conditioned and then adequate truncation of the eigenvalue decomposition (EVD) should be done. This paper clarifies how to simultaneously estimate the noise variance and truncate the eigenvalues, since they are mutually dependent. By introducing a multiple number of regularization parameters and determining them to minimize the MSE of the model parameters, we can give an optimal scheme for the truncation of eigenvalues. Furthermore, an iterative algorithm using only observed data is also clarified.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.35974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.35974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了利用过定模型的修正最小二乘方法确定加性白噪声中正弦波的个数。与总最小二乘(TLS)方法一样,CLS估计与普通最小二乘(LS)方法的不同之处在于,CLS估计从噪声观测数据的相关矩阵的对角元素中减去噪声方差。因此,所得矩阵的反演成为病态的,然后应该对特征值分解(EVD)进行适当的截断。本文阐述了如何同时估计噪声方差和截断特征值,因为它们是相互依赖的。通过引入多个正则化参数并确定它们以最小化模型参数的MSE,我们可以给出一个截断特征值的最优方案。此外,还阐明了仅使用观测数据的迭代算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSE-based regularization approach to rank determination in CLS and TLS estimation
The corrected least squares (CLS) approach using an over-determined model is investigated to decide the number of sinusoids in additive white noise. Like the total least squares (TLS) approach, the CLS estimation is different from the ordinary least squares (LS) method in that the noise variance is subtracted from the diagonal elements of the correlation matrix of the noisy observed data. Therefore the inversion of the resultant matrix becomes ill-conditioned and then adequate truncation of the eigenvalue decomposition (EVD) should be done. This paper clarifies how to simultaneously estimate the noise variance and truncate the eigenvalues, since they are mutually dependent. By introducing a multiple number of regularization parameters and determining them to minimize the MSE of the model parameters, we can give an optimal scheme for the truncation of eigenvalues. Furthermore, an iterative algorithm using only observed data is also clarified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信