一种基于LiDAR点云的建筑物检测分类方法

Mei Zhou, B. Xia, G. Su, L. Tang, Chanrong Li
{"title":"一种基于LiDAR点云的建筑物检测分类方法","authors":"Mei Zhou, B. Xia, G. Su, L. Tang, Chanrong Li","doi":"10.1109/URS.2009.5137608","DOIUrl":null,"url":null,"abstract":"Building detection using LiDAR data is a popular topic in LiDAR data processing. The object classification can play an important role in the detection. In this paper, a new algorithm based on LiDAR point clouds is developed to resolve the object classification difficulties in the case of trees close to buildings. Compared with other algorithms, the methods can work effectively due to use the combination of height texture and regular geometric element. The experiment results is also given and discussed to improve the validity of the proposed algorithm.","PeriodicalId":154334,"journal":{"name":"2009 Joint Urban Remote Sensing Event","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A classification method for building detection based on LiDAR point clouds\",\"authors\":\"Mei Zhou, B. Xia, G. Su, L. Tang, Chanrong Li\",\"doi\":\"10.1109/URS.2009.5137608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building detection using LiDAR data is a popular topic in LiDAR data processing. The object classification can play an important role in the detection. In this paper, a new algorithm based on LiDAR point clouds is developed to resolve the object classification difficulties in the case of trees close to buildings. Compared with other algorithms, the methods can work effectively due to use the combination of height texture and regular geometric element. The experiment results is also given and discussed to improve the validity of the proposed algorithm.\",\"PeriodicalId\":154334,\"journal\":{\"name\":\"2009 Joint Urban Remote Sensing Event\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Joint Urban Remote Sensing Event\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URS.2009.5137608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URS.2009.5137608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用激光雷达数据进行建筑物检测是激光雷达数据处理中的一个热门课题。目标分类在检测中起着重要的作用。本文提出了一种基于激光雷达点云的目标分类算法,以解决树木靠近建筑物时的目标分类困难。与其他算法相比,该方法采用了高度纹理和规则几何元素的结合,可以有效地提高算法的有效性。为了提高算法的有效性,给出了实验结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification method for building detection based on LiDAR point clouds
Building detection using LiDAR data is a popular topic in LiDAR data processing. The object classification can play an important role in the detection. In this paper, a new algorithm based on LiDAR point clouds is developed to resolve the object classification difficulties in the case of trees close to buildings. Compared with other algorithms, the methods can work effectively due to use the combination of height texture and regular geometric element. The experiment results is also given and discussed to improve the validity of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信