L. Lancashire, S. Ugurel, C. Creaser, D. Schadendorf, R. Rees, G. Ball
{"title":"利用人工神经网络阐明区分黑色素瘤临床分期的血清生物标志物模式","authors":"L. Lancashire, S. Ugurel, C. Creaser, D. Schadendorf, R. Rees, G. Ball","doi":"10.1109/CIBCB.2005.1594954","DOIUrl":null,"url":null,"abstract":"The identification of proteomic patterns from biomarkers in diseases such as cancer could lead to the determination of novel prognostic and diagnostic markers fundamental to the treatment of patients. We apply a recently developed approach utilizing artificial neural networks as a data mining tool to identify and characterize the best subset of biomarkers associated with melanoma. These were capable of predicting whether a sample is from a patient diagnosed with stage I or stage IV melanoma to median accuracies of 98 % on an independent subset of data used for validation. Furthermore, individual response curves have been generated allowing the investigation of whether these markers are up or down regulated with regards to tumor progression.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"21 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Utilizing Artificial Neural Networks to Elucidate Serum Biomarker Patterns Which Discriminate Between Clinical Stages in Melanoma\",\"authors\":\"L. Lancashire, S. Ugurel, C. Creaser, D. Schadendorf, R. Rees, G. Ball\",\"doi\":\"10.1109/CIBCB.2005.1594954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of proteomic patterns from biomarkers in diseases such as cancer could lead to the determination of novel prognostic and diagnostic markers fundamental to the treatment of patients. We apply a recently developed approach utilizing artificial neural networks as a data mining tool to identify and characterize the best subset of biomarkers associated with melanoma. These were capable of predicting whether a sample is from a patient diagnosed with stage I or stage IV melanoma to median accuracies of 98 % on an independent subset of data used for validation. Furthermore, individual response curves have been generated allowing the investigation of whether these markers are up or down regulated with regards to tumor progression.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"21 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizing Artificial Neural Networks to Elucidate Serum Biomarker Patterns Which Discriminate Between Clinical Stages in Melanoma
The identification of proteomic patterns from biomarkers in diseases such as cancer could lead to the determination of novel prognostic and diagnostic markers fundamental to the treatment of patients. We apply a recently developed approach utilizing artificial neural networks as a data mining tool to identify and characterize the best subset of biomarkers associated with melanoma. These were capable of predicting whether a sample is from a patient diagnosed with stage I or stage IV melanoma to median accuracies of 98 % on an independent subset of data used for validation. Furthermore, individual response curves have been generated allowing the investigation of whether these markers are up or down regulated with regards to tumor progression.