用于设计和分析快速加法算法的计数器树形图

Jun Sakiyama, T. Aoki, T. Higuchi
{"title":"用于设计和分析快速加法算法的计数器树形图","authors":"Jun Sakiyama, T. Aoki, T. Higuchi","doi":"10.1109/ISMVL.2003.1201390","DOIUrl":null,"url":null,"abstract":"This paper presents a unified representation of fast addition algorithms based on Counter Tree Diagrams (CTDs). By using CTDs, we can describe and analyze various adder architectures in a systematic way without using specific knowledge about underlying arithmetic algorithms. Examples of adder architectures that can be handled by CTDs include Redundant-Binary (R-B) adders, Signed-Digit (SD) adders, Positive-Digit (PD) or carry-save adders, parallel counters (e.g., 3-2 counters and 4-2 counters) and networks of such basic adders/counters. This paper also discusses the CTD-based design and analysis of carry-propagation-free adders using redundant number representation.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Counter Tree Diagrams for design and analysis of fast addition algorithms\",\"authors\":\"Jun Sakiyama, T. Aoki, T. Higuchi\",\"doi\":\"10.1109/ISMVL.2003.1201390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unified representation of fast addition algorithms based on Counter Tree Diagrams (CTDs). By using CTDs, we can describe and analyze various adder architectures in a systematic way without using specific knowledge about underlying arithmetic algorithms. Examples of adder architectures that can be handled by CTDs include Redundant-Binary (R-B) adders, Signed-Digit (SD) adders, Positive-Digit (PD) or carry-save adders, parallel counters (e.g., 3-2 counters and 4-2 counters) and networks of such basic adders/counters. This paper also discusses the CTD-based design and analysis of carry-propagation-free adders using redundant number representation.\",\"PeriodicalId\":434515,\"journal\":{\"name\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2003.1201390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于计数器树图的快速加法算法的统一表示。通过使用ctd,我们可以系统地描述和分析各种加法器体系结构,而无需使用有关底层算术算法的特定知识。ctd可以处理的加法器架构的例子包括冗余二进制(R-B)加法器,有符号数字(SD)加法器,正数(PD)或进位保存加法器,并行计数器(例如,3-2计数器和4-2计数器)以及这些基本加法器/计数器的网络。本文还讨论了基于ctd的冗余数字表示无载波传播加法器的设计和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counter Tree Diagrams for design and analysis of fast addition algorithms
This paper presents a unified representation of fast addition algorithms based on Counter Tree Diagrams (CTDs). By using CTDs, we can describe and analyze various adder architectures in a systematic way without using specific knowledge about underlying arithmetic algorithms. Examples of adder architectures that can be handled by CTDs include Redundant-Binary (R-B) adders, Signed-Digit (SD) adders, Positive-Digit (PD) or carry-save adders, parallel counters (e.g., 3-2 counters and 4-2 counters) and networks of such basic adders/counters. This paper also discusses the CTD-based design and analysis of carry-propagation-free adders using redundant number representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信