使用标签关联的多标签分类

Yuichiro Kase, T. Miura
{"title":"使用标签关联的多标签分类","authors":"Yuichiro Kase, T. Miura","doi":"10.1109/PACRIM.2015.7334815","DOIUrl":null,"url":null,"abstract":"In this investigation we discuss a multi-label classification problem where documents may have several labels. We put our focus on dependencies among labels in a probabilistic manner, and we extract characteristic features in a form of probabilistic distribution functions by data mining techniques. We show some experimental results, i.e., dependencies among items/labels to see the effectiveness of the approach.","PeriodicalId":350052,"journal":{"name":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"5 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-label classification using labelled association\",\"authors\":\"Yuichiro Kase, T. Miura\",\"doi\":\"10.1109/PACRIM.2015.7334815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation we discuss a multi-label classification problem where documents may have several labels. We put our focus on dependencies among labels in a probabilistic manner, and we extract characteristic features in a form of probabilistic distribution functions by data mining techniques. We show some experimental results, i.e., dependencies among items/labels to see the effectiveness of the approach.\",\"PeriodicalId\":350052,\"journal\":{\"name\":\"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"volume\":\"5 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2015.7334815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2015.7334815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们讨论了一个多标签分类问题,其中文档可能有多个标签。我们以概率的方式关注标签之间的依赖关系,并通过数据挖掘技术以概率分布函数的形式提取特征特征。我们展示了一些实验结果,即项目/标签之间的依赖关系,以查看该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-label classification using labelled association
In this investigation we discuss a multi-label classification problem where documents may have several labels. We put our focus on dependencies among labels in a probabilistic manner, and we extract characteristic features in a form of probabilistic distribution functions by data mining techniques. We show some experimental results, i.e., dependencies among items/labels to see the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信