基于说话人自适应的dnn情绪语音合成

Hongwu Yang, Weizhao Zhang, Pengpeng Zhi
{"title":"基于说话人自适应的dnn情绪语音合成","authors":"Hongwu Yang, Weizhao Zhang, Pengpeng Zhi","doi":"10.23919/APSIPA.2018.8659599","DOIUrl":null,"url":null,"abstract":"The paper proposes a deep neural network (DNN)-based emotional speech synthesis method to improve the quality of synthesized emotional speech by speaker adaptation with a multi-speaker and multi-emotion speech corpus. Firstly, a text analyzer is employed to obtain the contextual labels from sentences while the WORLD vocoder is used to extract the acoustic features from corresponding speeches. Then a set of speaker-independent DNN average voice models are trained with the contextual labels and acoustic features of multi-emotion speech corpus. Finally, the speaker adaptation is adopted to train a set of speaker-dependent DNN voice models of target emotion with target emotional training speeches. The target emotional speech is synthesized by the speaker-dependent DNN voice models. Subjective evaluations show that comparing with the traditional hidden Markov model (HMM)-based method, the proposed method can achieve higher opinion scores. Objective tests demonstrate that the spectrum of the emotional speech synthesized by the proposed method is also closer to the original speech than that of the emotional speech synthesized by the HMM-based method. Therefore, the proposed method can improve the emotion express and naturalness of synthesized emotional speech.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A DNN-based emotional speech synthesis by speaker adaptation\",\"authors\":\"Hongwu Yang, Weizhao Zhang, Pengpeng Zhi\",\"doi\":\"10.23919/APSIPA.2018.8659599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a deep neural network (DNN)-based emotional speech synthesis method to improve the quality of synthesized emotional speech by speaker adaptation with a multi-speaker and multi-emotion speech corpus. Firstly, a text analyzer is employed to obtain the contextual labels from sentences while the WORLD vocoder is used to extract the acoustic features from corresponding speeches. Then a set of speaker-independent DNN average voice models are trained with the contextual labels and acoustic features of multi-emotion speech corpus. Finally, the speaker adaptation is adopted to train a set of speaker-dependent DNN voice models of target emotion with target emotional training speeches. The target emotional speech is synthesized by the speaker-dependent DNN voice models. Subjective evaluations show that comparing with the traditional hidden Markov model (HMM)-based method, the proposed method can achieve higher opinion scores. Objective tests demonstrate that the spectrum of the emotional speech synthesized by the proposed method is also closer to the original speech than that of the emotional speech synthesized by the HMM-based method. Therefore, the proposed method can improve the emotion express and naturalness of synthesized emotional speech.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于深度神经网络(DNN)的情绪语音合成方法,利用多说话人、多情绪语音语料库对说话人进行自适应,提高合成情绪语音的质量。首先,使用文本分析器从句子中获取上下文标签,并使用WORLD声码器从相应的语音中提取声学特征。然后利用上下文标签和多情感语音语料库的声学特征训练一组独立于说话人的DNN平均语音模型。最后,采用说话人自适应,用目标情绪训练演讲训练一组目标情绪依赖于说话人的DNN语音模型。目标情绪语音由说话人依赖的深度神经网络语音模型合成。主观评价表明,与传统的基于隐马尔可夫模型(HMM)的方法相比,该方法可以获得更高的意见得分。客观测试表明,与基于hmm的方法合成的情绪语音相比,该方法合成的情绪语音频谱更接近原始语音。因此,该方法可以提高合成情感语音的情感表达和自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DNN-based emotional speech synthesis by speaker adaptation
The paper proposes a deep neural network (DNN)-based emotional speech synthesis method to improve the quality of synthesized emotional speech by speaker adaptation with a multi-speaker and multi-emotion speech corpus. Firstly, a text analyzer is employed to obtain the contextual labels from sentences while the WORLD vocoder is used to extract the acoustic features from corresponding speeches. Then a set of speaker-independent DNN average voice models are trained with the contextual labels and acoustic features of multi-emotion speech corpus. Finally, the speaker adaptation is adopted to train a set of speaker-dependent DNN voice models of target emotion with target emotional training speeches. The target emotional speech is synthesized by the speaker-dependent DNN voice models. Subjective evaluations show that comparing with the traditional hidden Markov model (HMM)-based method, the proposed method can achieve higher opinion scores. Objective tests demonstrate that the spectrum of the emotional speech synthesized by the proposed method is also closer to the original speech than that of the emotional speech synthesized by the HMM-based method. Therefore, the proposed method can improve the emotion express and naturalness of synthesized emotional speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信