基于动作的姿态和手势识别的语义匹配

M. Ruta, F. Scioscia, Maria di Summa, S. Ieva, E. Sciascio, M. Sacco
{"title":"基于动作的姿态和手势识别的语义匹配","authors":"M. Ruta, F. Scioscia, Maria di Summa, S. Ieva, E. Sciascio, M. Sacco","doi":"10.1142/S1793351X14400169","DOIUrl":null,"url":null,"abstract":"Innovative analysis methods applied to data extracted by off-the-shelf peripherals can provide useful results in activity recognition without requiring large computational resources. In this paper a framework is proposed for automated posture and gesture recognition, exploiting depth data provided by a commercial tracking device. The detection problem is handled as a semantic-based resource discovery. A general data model and the corresponding ontology provide the formal underpinning for automatic posture and gesture annotation via standard Semantic Web languages. Hence, a logic-based matchmaking, exploiting non-standard inference services, allows to: (i) detect postures via on-the-fly comparison of the retrieved annotations with standard posture descriptions stored as instances of a proper Knowledge Base, (ii) compare subsequent postures in order to recognize gestures. The framework has been implemented in a prototypical tool and experimental tests have been carried out on a reference dataset. Preliminary results indicate the feasibility of the proposed approach.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Semantic Matchmaking for Kinect-Based Posture and Gesture Recognition\",\"authors\":\"M. Ruta, F. Scioscia, Maria di Summa, S. Ieva, E. Sciascio, M. Sacco\",\"doi\":\"10.1142/S1793351X14400169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Innovative analysis methods applied to data extracted by off-the-shelf peripherals can provide useful results in activity recognition without requiring large computational resources. In this paper a framework is proposed for automated posture and gesture recognition, exploiting depth data provided by a commercial tracking device. The detection problem is handled as a semantic-based resource discovery. A general data model and the corresponding ontology provide the formal underpinning for automatic posture and gesture annotation via standard Semantic Web languages. Hence, a logic-based matchmaking, exploiting non-standard inference services, allows to: (i) detect postures via on-the-fly comparison of the retrieved annotations with standard posture descriptions stored as instances of a proper Knowledge Base, (ii) compare subsequent postures in order to recognize gestures. The framework has been implemented in a prototypical tool and experimental tests have been carried out on a reference dataset. Preliminary results indicate the feasibility of the proposed approach.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793351X14400169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X14400169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

创新的分析方法应用于由现成外设提取的数据,可以在不需要大量计算资源的情况下提供有用的活动识别结果。本文提出了一种利用商业跟踪设备提供的深度数据进行自动姿态和手势识别的框架。检测问题作为基于语义的资源发现来处理。通用数据模型和相应的本体为通过标准语义Web语言实现自动姿态和手势注释提供了形式化的基础。因此,基于逻辑的匹配,利用非标准的推理服务,允许:(i)通过将检索到的注释与存储为适当知识库实例的标准姿势描述进行实时比较来检测姿势,(ii)比较后续姿势以识别手势。该框架已在原型工具中实现,并在参考数据集上进行了实验测试。初步结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Matchmaking for Kinect-Based Posture and Gesture Recognition
Innovative analysis methods applied to data extracted by off-the-shelf peripherals can provide useful results in activity recognition without requiring large computational resources. In this paper a framework is proposed for automated posture and gesture recognition, exploiting depth data provided by a commercial tracking device. The detection problem is handled as a semantic-based resource discovery. A general data model and the corresponding ontology provide the formal underpinning for automatic posture and gesture annotation via standard Semantic Web languages. Hence, a logic-based matchmaking, exploiting non-standard inference services, allows to: (i) detect postures via on-the-fly comparison of the retrieved annotations with standard posture descriptions stored as instances of a proper Knowledge Base, (ii) compare subsequent postures in order to recognize gestures. The framework has been implemented in a prototypical tool and experimental tests have been carried out on a reference dataset. Preliminary results indicate the feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信