结合全局特征和局部特征对绘画进行有效分类

Z. Haladová, E. Sikudová
{"title":"结合全局特征和局部特征对绘画进行有效分类","authors":"Z. Haladová, E. Sikudová","doi":"10.1145/2508244.2508246","DOIUrl":null,"url":null,"abstract":"Since the beginning of the new century an increasing amount of smartphones sold every year causes a strong interest in the interactive mobile guides (travel, museum guides) utilizing the visual recognition of interesting objects. In our paper we focus on a special class of objects -- fine art paintings. We introduce new pipeline of visual recognition employing both local and global image features. In the recognition process we firstly sort the database of Originals, the high quality paintings based on the global feature extracted from the photograph of a painting and then match the local feature descriptors for efficient recognition. Our approach achieves the speed up of the recognition process by minimizing the number local feature comparisons.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"17 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combination of Global and Local Features for Efficient Classification of Paintings\",\"authors\":\"Z. Haladová, E. Sikudová\",\"doi\":\"10.1145/2508244.2508246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the beginning of the new century an increasing amount of smartphones sold every year causes a strong interest in the interactive mobile guides (travel, museum guides) utilizing the visual recognition of interesting objects. In our paper we focus on a special class of objects -- fine art paintings. We introduce new pipeline of visual recognition employing both local and global image features. In the recognition process we firstly sort the database of Originals, the high quality paintings based on the global feature extracted from the photograph of a painting and then match the local feature descriptors for efficient recognition. Our approach achieves the speed up of the recognition process by minimizing the number local feature comparisons.\",\"PeriodicalId\":235681,\"journal\":{\"name\":\"Spring conference on Computer graphics\",\"volume\":\"17 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spring conference on Computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2508244.2508246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2508244.2508246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

进入新世纪以来,智能手机的销量每年都在增加,人们对利用视觉识别有趣物体的交互式移动导游(旅游、博物馆导游)产生了浓厚的兴趣。在我们的论文中,我们关注的是一类特殊的对象——美术绘画。我们引入了利用局部和全局图像特征的新的视觉识别管道。在识别过程中,我们首先根据从绘画照片中提取的全局特征对高质量绘画原作数据库进行分类,然后匹配局部特征描述符进行高效识别。我们的方法通过减少局部特征比较的次数来加快识别过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of Global and Local Features for Efficient Classification of Paintings
Since the beginning of the new century an increasing amount of smartphones sold every year causes a strong interest in the interactive mobile guides (travel, museum guides) utilizing the visual recognition of interesting objects. In our paper we focus on a special class of objects -- fine art paintings. We introduce new pipeline of visual recognition employing both local and global image features. In the recognition process we firstly sort the database of Originals, the high quality paintings based on the global feature extracted from the photograph of a painting and then match the local feature descriptors for efficient recognition. Our approach achieves the speed up of the recognition process by minimizing the number local feature comparisons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信