多感官MAMI-1数据采集中运动目标的提取与分类

R. Ilin, Scott Clouse
{"title":"多感官MAMI-1数据采集中运动目标的提取与分类","authors":"R. Ilin, Scott Clouse","doi":"10.1109/NAECON.2015.7443102","DOIUrl":null,"url":null,"abstract":"In this work we consider the problem of extraction and classification of moving targets in wide area imagery. We use the Air Force Research Laboratory's (AFRL) airborne multi-sensor dataset, MAMI-1, for testing, wherein moving targets mostly consist of people and vehicles. The movers are extracted using a novel sparse and low-rank matrix decomposition technique. We further compare the classification performance based on SIFT, Dense SIFT, and a superpixel based feature extraction. The results show the superpixel approach as the most advantageous.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extraction and classification of moving targets in multi-sensory MAMI-1 data collection\",\"authors\":\"R. Ilin, Scott Clouse\",\"doi\":\"10.1109/NAECON.2015.7443102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider the problem of extraction and classification of moving targets in wide area imagery. We use the Air Force Research Laboratory's (AFRL) airborne multi-sensor dataset, MAMI-1, for testing, wherein moving targets mostly consist of people and vehicles. The movers are extracted using a novel sparse and low-rank matrix decomposition technique. We further compare the classification performance based on SIFT, Dense SIFT, and a superpixel based feature extraction. The results show the superpixel approach as the most advantageous.\",\"PeriodicalId\":133804,\"journal\":{\"name\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2015.7443102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了广域图像中运动目标的提取与分类问题。我们使用空军研究实验室(AFRL)机载多传感器数据集MAMI-1进行测试,其中移动目标主要由人和车辆组成。使用一种新颖的稀疏低秩矩阵分解技术提取运动项。我们进一步比较了基于SIFT、Dense SIFT和基于超像素的特征提取的分类性能。结果表明,超像素方法最具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction and classification of moving targets in multi-sensory MAMI-1 data collection
In this work we consider the problem of extraction and classification of moving targets in wide area imagery. We use the Air Force Research Laboratory's (AFRL) airborne multi-sensor dataset, MAMI-1, for testing, wherein moving targets mostly consist of people and vehicles. The movers are extracted using a novel sparse and low-rank matrix decomposition technique. We further compare the classification performance based on SIFT, Dense SIFT, and a superpixel based feature extraction. The results show the superpixel approach as the most advantageous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信