概率关系模型与数据库的随机生成与总体

Mouna Ben Ishak, P. Leray, N. B. Amor
{"title":"概率关系模型与数据库的随机生成与总体","authors":"Mouna Ben Ishak, P. Leray, N. B. Amor","doi":"10.1109/ICTAI.2014.117","DOIUrl":null,"url":null,"abstract":"Probabilistic relational models (PRMs) extend Bayesian networks (BNs) to a relational data mining context. Even though a panoply of works have focused, separately, on Bayesian networks and relational databases random generation, no work has been identified for PRMs on that track. This paper provides an algorithmic approach allowing to generate random PRMs from scratch to cover the absence of generation process. The proposed method allows to generate PRMs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. This can be of interest for machine learning researchers to evaluate their proposals in a common framework, as for databases designers to evaluate the effectiveness of the components of a database management system.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Random Generation and Population of Probabilistic Relational Models and Databases\",\"authors\":\"Mouna Ben Ishak, P. Leray, N. B. Amor\",\"doi\":\"10.1109/ICTAI.2014.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic relational models (PRMs) extend Bayesian networks (BNs) to a relational data mining context. Even though a panoply of works have focused, separately, on Bayesian networks and relational databases random generation, no work has been identified for PRMs on that track. This paper provides an algorithmic approach allowing to generate random PRMs from scratch to cover the absence of generation process. The proposed method allows to generate PRMs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. This can be of interest for machine learning researchers to evaluate their proposals in a common framework, as for databases designers to evaluate the effectiveness of the components of a database management system.\",\"PeriodicalId\":142794,\"journal\":{\"name\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2014.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

概率关系模型(PRMs)将贝叶斯网络(bn)扩展到关系数据挖掘环境。尽管已经有大量的工作分别集中在贝叶斯网络和关系数据库随机生成上,但在这方面还没有发现针对PRMs的工作。本文提供了一种算法方法,允许从头开始生成随机prm,以覆盖生成过程的缺失。所提出的方法允许从随机生成的关系模式和随机的概率依赖项集生成prm以及合成关系数据。这对于机器学习研究人员在一个通用框架中评估他们的建议可能很有兴趣,就像数据库设计人员评估数据库管理系统组件的有效性一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Generation and Population of Probabilistic Relational Models and Databases
Probabilistic relational models (PRMs) extend Bayesian networks (BNs) to a relational data mining context. Even though a panoply of works have focused, separately, on Bayesian networks and relational databases random generation, no work has been identified for PRMs on that track. This paper provides an algorithmic approach allowing to generate random PRMs from scratch to cover the absence of generation process. The proposed method allows to generate PRMs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. This can be of interest for machine learning researchers to evaluate their proposals in a common framework, as for databases designers to evaluate the effectiveness of the components of a database management system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信