{"title":"核自适应一类支持向量机路径","authors":"Van Khoa Le, P. Beauseroy","doi":"10.1109/ICMLA.2015.127","DOIUrl":null,"url":null,"abstract":"This paper proposes a Kernel Adaptive One Class SVM (KAOC-SVM) method based on the model introduced by A. Scholkopf and al. [7]. The aim is to find the solution path - the path of Lagrange multiplier a - as the kernel parameter changes from one value to another. It is similar to the regularization path approach proposed by Hastie and al. [2], which finds the path when the regularization parameter ? changes from 0 to 1. In present case, the main difference is that the Lagrange multiplier paths are not piecewise linear anymore. Experimental results show that the proposed method is able to compute one-class SVMs with the same accuracy as traditional method but exploring all solutions combining 2 kernels. Simulation results are presented and CPU requirement is analyzed.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Path for Kernel Adaptive One-Class Support Vector Machine\",\"authors\":\"Van Khoa Le, P. Beauseroy\",\"doi\":\"10.1109/ICMLA.2015.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Kernel Adaptive One Class SVM (KAOC-SVM) method based on the model introduced by A. Scholkopf and al. [7]. The aim is to find the solution path - the path of Lagrange multiplier a - as the kernel parameter changes from one value to another. It is similar to the regularization path approach proposed by Hastie and al. [2], which finds the path when the regularization parameter ? changes from 0 to 1. In present case, the main difference is that the Lagrange multiplier paths are not piecewise linear anymore. Experimental results show that the proposed method is able to compute one-class SVMs with the same accuracy as traditional method but exploring all solutions combining 2 kernels. Simulation results are presented and CPU requirement is analyzed.\",\"PeriodicalId\":288427,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2015.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Path for Kernel Adaptive One-Class Support Vector Machine
This paper proposes a Kernel Adaptive One Class SVM (KAOC-SVM) method based on the model introduced by A. Scholkopf and al. [7]. The aim is to find the solution path - the path of Lagrange multiplier a - as the kernel parameter changes from one value to another. It is similar to the regularization path approach proposed by Hastie and al. [2], which finds the path when the regularization parameter ? changes from 0 to 1. In present case, the main difference is that the Lagrange multiplier paths are not piecewise linear anymore. Experimental results show that the proposed method is able to compute one-class SVMs with the same accuracy as traditional method but exploring all solutions combining 2 kernels. Simulation results are presented and CPU requirement is analyzed.