时空全尺度特征学习对人物再识别的影响

Aida Pločo, Andrea Macarulla Rodriguez, Z. Geradts
{"title":"时空全尺度特征学习对人物再识别的影响","authors":"Aida Pločo, Andrea Macarulla Rodriguez, Z. Geradts","doi":"10.1109/IWBF49977.2020.9107966","DOIUrl":null,"url":null,"abstract":"State-of-the-art person re-identification (ReID) models use Convolutional Neural Networks (CNN) for feature extraction and comparison. Often these models fail to recognize all the intra- and inter-class variations that emerge in person ReID, making it harder to discriminate between data subjects. In this paper we seek to reduce these problems and improve performance by combining two state-of-the-art models. We use the Omni-Scale Network (OSNet) as our CNN to test the Market1501 and DukeMTMC-ReID datasets for person ReID. To fully utilize the potential of these datasets, we apply the spatialtemporal constraint which extracts the camera ID and timestamp from each image to form a distribution. We combine these two methods to create a hybrid model titled Spatial-Temporal OmniScale Network (st-OSNet). Our model attains a Rank-1 (R1) accuracy of 98.2% and mean average precision (mAP) of 92.7% for the Market1501 dataset. For the DukeMTMC-reID dataset our model achieves 94.3% R1 and 86.1% mAP, hereby surpassing the results of OSNet by a large margin for both datasets (94.3%, 86.4%, 88.4%, 76.1%, respectively).","PeriodicalId":174654,"journal":{"name":"2020 8th International Workshop on Biometrics and Forensics (IWBF)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial-Temporal Omni-Scale Feature Learning for Person Re-Identification\",\"authors\":\"Aida Pločo, Andrea Macarulla Rodriguez, Z. Geradts\",\"doi\":\"10.1109/IWBF49977.2020.9107966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art person re-identification (ReID) models use Convolutional Neural Networks (CNN) for feature extraction and comparison. Often these models fail to recognize all the intra- and inter-class variations that emerge in person ReID, making it harder to discriminate between data subjects. In this paper we seek to reduce these problems and improve performance by combining two state-of-the-art models. We use the Omni-Scale Network (OSNet) as our CNN to test the Market1501 and DukeMTMC-ReID datasets for person ReID. To fully utilize the potential of these datasets, we apply the spatialtemporal constraint which extracts the camera ID and timestamp from each image to form a distribution. We combine these two methods to create a hybrid model titled Spatial-Temporal OmniScale Network (st-OSNet). Our model attains a Rank-1 (R1) accuracy of 98.2% and mean average precision (mAP) of 92.7% for the Market1501 dataset. For the DukeMTMC-reID dataset our model achieves 94.3% R1 and 86.1% mAP, hereby surpassing the results of OSNet by a large margin for both datasets (94.3%, 86.4%, 88.4%, 76.1%, respectively).\",\"PeriodicalId\":174654,\"journal\":{\"name\":\"2020 8th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF49977.2020.9107966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF49977.2020.9107966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最先进的人物再识别(ReID)模型使用卷积神经网络(CNN)进行特征提取和比较。通常,这些模型不能识别所有在个人ReID中出现的类内和类间变化,这使得区分数据主体变得更加困难。在本文中,我们试图通过结合两个最先进的模型来减少这些问题并提高性能。我们使用全尺度网络(OSNet)作为我们的CNN来测试个人ReID的Market1501和DukeMTMC-ReID数据集。为了充分利用这些数据集的潜力,我们应用时空约束,从每个图像中提取相机ID和时间戳,形成一个分布。我们将这两种方法结合起来,创建了一个名为时空全尺度网络(st-OSNet)的混合模型。对于Market1501数据集,我们的模型获得了98.2%的Rank-1 (R1)精度和92.7%的平均精度(mAP)。对于DukeMTMC-reID数据集,我们的模型达到了94.3%的R1和86.1%的mAP,大大超过了OSNet的结果(分别为94.3%,86.4%,88.4%,76.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-Temporal Omni-Scale Feature Learning for Person Re-Identification
State-of-the-art person re-identification (ReID) models use Convolutional Neural Networks (CNN) for feature extraction and comparison. Often these models fail to recognize all the intra- and inter-class variations that emerge in person ReID, making it harder to discriminate between data subjects. In this paper we seek to reduce these problems and improve performance by combining two state-of-the-art models. We use the Omni-Scale Network (OSNet) as our CNN to test the Market1501 and DukeMTMC-ReID datasets for person ReID. To fully utilize the potential of these datasets, we apply the spatialtemporal constraint which extracts the camera ID and timestamp from each image to form a distribution. We combine these two methods to create a hybrid model titled Spatial-Temporal OmniScale Network (st-OSNet). Our model attains a Rank-1 (R1) accuracy of 98.2% and mean average precision (mAP) of 92.7% for the Market1501 dataset. For the DukeMTMC-reID dataset our model achieves 94.3% R1 and 86.1% mAP, hereby surpassing the results of OSNet by a large margin for both datasets (94.3%, 86.4%, 88.4%, 76.1%, respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信