基于高效自适应滤波的块稀疏性系统识别

B. K. Das, Arpan Mukherjee, M. Chakraborty
{"title":"基于高效自适应滤波的块稀疏性系统识别","authors":"B. K. Das, Arpan Mukherjee, M. Chakraborty","doi":"10.1109/NCC48643.2020.9056024","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient proportionate type block sparse LMS algorithm with a group zero-point attraction (GZA) penalty term for clustered sparse system identification. The proposed algorithm is based on the combination of a mechanism for proportionate gain control, and a mixed $l_{2},0$ norm regularization, and outperforms the existing class of block proportionate sparsity-induced algorithms. The performance analysis of the proposed algorithm is then carried out, providing limits to the mean deviation from the original system. We also propose an improved proportionate type block sparse adaptive filtering algorithm with modified gain control mechanism. This one is more robust to the varying degrees of sparsity in the system to be identified than the former. Numerical simulations to identify single and two clustered sparse systems using white, correlated, and speech signals manifest the superiority of the proposed algorithms.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Block-Sparsity-Induced System Identification Using Efficient Adaptive Filtering\",\"authors\":\"B. K. Das, Arpan Mukherjee, M. Chakraborty\",\"doi\":\"10.1109/NCC48643.2020.9056024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient proportionate type block sparse LMS algorithm with a group zero-point attraction (GZA) penalty term for clustered sparse system identification. The proposed algorithm is based on the combination of a mechanism for proportionate gain control, and a mixed $l_{2},0$ norm regularization, and outperforms the existing class of block proportionate sparsity-induced algorithms. The performance analysis of the proposed algorithm is then carried out, providing limits to the mean deviation from the original system. We also propose an improved proportionate type block sparse adaptive filtering algorithm with modified gain control mechanism. This one is more robust to the varying degrees of sparsity in the system to be identified than the former. Numerical simulations to identify single and two clustered sparse systems using white, correlated, and speech signals manifest the superiority of the proposed algorithms.\",\"PeriodicalId\":183772,\"journal\":{\"name\":\"2020 National Conference on Communications (NCC)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC48643.2020.9056024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种有效的比例型块稀疏LMS算法,该算法带有组零点吸引(GZA)惩罚项,用于聚类稀疏系统的识别。该算法基于比例增益控制机制和混合l_{2},0$范数正则化的结合,并且优于现有的块比例稀疏性诱导算法。然后对所提出的算法进行性能分析,提供与原始系统的平均偏差的限制。在改进增益控制机制的基础上,提出了一种改进的比例型块稀疏自适应滤波算法。与前一种方法相比,这种方法对于待识别系统中不同程度的稀疏性更加健壮。利用白信号、相关信号和语音信号识别单个和两个聚类稀疏系统的数值模拟表明了所提出算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block-Sparsity-Induced System Identification Using Efficient Adaptive Filtering
In this paper, we propose an efficient proportionate type block sparse LMS algorithm with a group zero-point attraction (GZA) penalty term for clustered sparse system identification. The proposed algorithm is based on the combination of a mechanism for proportionate gain control, and a mixed $l_{2},0$ norm regularization, and outperforms the existing class of block proportionate sparsity-induced algorithms. The performance analysis of the proposed algorithm is then carried out, providing limits to the mean deviation from the original system. We also propose an improved proportionate type block sparse adaptive filtering algorithm with modified gain control mechanism. This one is more robust to the varying degrees of sparsity in the system to be identified than the former. Numerical simulations to identify single and two clustered sparse systems using white, correlated, and speech signals manifest the superiority of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信