{"title":"递归中的指针:探索热带","authors":"Paulin Jacobé de Naurois","doi":"10.4204/EPTCS.298.3","DOIUrl":null,"url":null,"abstract":"We translate the usual class of partial/primitive recursive functions to a pointer recursion framework, accessing actual input values via a pointer reading unit-cost function. These pointer recursive functions classes are proven equivalent to the usual partial/primitive recursive functions. Complexity-wise, this framework captures in a streamlined way most of the relevant sub-polynomial classes. Pointer recursion with the safe/normal tiering discipline of Bellantoni and Cook corresponds to polylogtime computation. We introduce a new, non-size increasing tiering discipline, called tropical tiering. Tropical tiering and pointer recursion, used with some of the most common recursion schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC. Finally, in a fashion reminiscent of the safe recursive functions, tropical tiering is expressed directly in the syntax of the function algebras, yielding the tropical recursive function algebras.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pointers in Recursion: Exploring the Tropics\",\"authors\":\"Paulin Jacobé de Naurois\",\"doi\":\"10.4204/EPTCS.298.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We translate the usual class of partial/primitive recursive functions to a pointer recursion framework, accessing actual input values via a pointer reading unit-cost function. These pointer recursive functions classes are proven equivalent to the usual partial/primitive recursive functions. Complexity-wise, this framework captures in a streamlined way most of the relevant sub-polynomial classes. Pointer recursion with the safe/normal tiering discipline of Bellantoni and Cook corresponds to polylogtime computation. We introduce a new, non-size increasing tiering discipline, called tropical tiering. Tropical tiering and pointer recursion, used with some of the most common recursion schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC. Finally, in a fashion reminiscent of the safe recursive functions, tropical tiering is expressed directly in the syntax of the function algebras, yielding the tropical recursive function algebras.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.298.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.298.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We translate the usual class of partial/primitive recursive functions to a pointer recursion framework, accessing actual input values via a pointer reading unit-cost function. These pointer recursive functions classes are proven equivalent to the usual partial/primitive recursive functions. Complexity-wise, this framework captures in a streamlined way most of the relevant sub-polynomial classes. Pointer recursion with the safe/normal tiering discipline of Bellantoni and Cook corresponds to polylogtime computation. We introduce a new, non-size increasing tiering discipline, called tropical tiering. Tropical tiering and pointer recursion, used with some of the most common recursion schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC. Finally, in a fashion reminiscent of the safe recursive functions, tropical tiering is expressed directly in the syntax of the function algebras, yielding the tropical recursive function algebras.