二阶非平稳源分离的自然梯度学习

Seungjin Choi, A. Cichocki, S. Amari
{"title":"二阶非平稳源分离的自然梯度学习","authors":"Seungjin Choi, A. Cichocki, S. Amari","doi":"10.1109/IJCNN.2002.1005550","DOIUrl":null,"url":null,"abstract":"In this paper we consider a problem of source separation when sources are second-order nonstationary stochastic processes. We employ the natural gradient method and develop learning algorithms for both linear feedback and feedforward neural networks. Thus our algorithms possess equivariant property. The local stability analysis shows that separating solutions are always locally stable stationary points of the proposed algorithms, regardless of probability distributions of sources.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Natural gradient learning for second-order nonstationary source separation\",\"authors\":\"Seungjin Choi, A. Cichocki, S. Amari\",\"doi\":\"10.1109/IJCNN.2002.1005550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a problem of source separation when sources are second-order nonstationary stochastic processes. We employ the natural gradient method and develop learning algorithms for both linear feedback and feedforward neural networks. Thus our algorithms possess equivariant property. The local stability analysis shows that separating solutions are always locally stable stationary points of the proposed algorithms, regardless of probability distributions of sources.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1005550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了二阶非平稳随机过程的源分离问题。我们采用自然梯度方法,并开发了线性反馈和前馈神经网络的学习算法。因此我们的算法具有等变性质。局部稳定性分析表明,无论源的概率分布如何,分离解都是算法的局部稳定平稳点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural gradient learning for second-order nonstationary source separation
In this paper we consider a problem of source separation when sources are second-order nonstationary stochastic processes. We employ the natural gradient method and develop learning algorithms for both linear feedback and feedforward neural networks. Thus our algorithms possess equivariant property. The local stability analysis shows that separating solutions are always locally stable stationary points of the proposed algorithms, regardless of probability distributions of sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信