基于沃森混合模型的深度图像无监督聚类

A. Hasnat, O. Alata, A. Trémeau
{"title":"基于沃森混合模型的深度图像无监督聚类","authors":"A. Hasnat, O. Alata, A. Trémeau","doi":"10.1109/ICPR.2014.46","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM), (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method, (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Unsupervised Clustering of Depth Images Using Watson Mixture Model\",\"authors\":\"A. Hasnat, O. Alata, A. Trémeau\",\"doi\":\"10.1109/ICPR.2014.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM), (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method, (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种轴对称方向单位向量的无监督聚类方法。我们的方法利用基于模型的聚类框架中的沃森分布和Bregman散度。我们的方法的主要目标是:(a)提供有效的解决方案来估计沃森混合模型(WMM)的参数,(b)生成一组WMM, (b)选择最优模型。为此,我们开发了:(a)一种高效的软聚类方法;(b)参数空间的分层聚类方法;(c)利用信息标准和评价图的模型选择策略。我们使用合成数据对所提出的方法进行了实证验证。接下来,我们将该方法应用于图像法向聚类,并证明该方法是分析深度图像的潜在工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Clustering of Depth Images Using Watson Mixture Model
In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM), (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method, (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信