{"title":"套袋梯度增强树用于高精度、低方差排序模型","authors":"Y. Ganjisaffar, R. Caruana, C. Lopes","doi":"10.1145/2009916.2009932","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that boosting provides excellent predictive performance across a wide variety of tasks. In Learning-to-rank, boosted models such as RankBoost and LambdaMART have been shown to be among the best performing learning methods based on evaluations on public data sets. In this paper, we show how the combination of bagging as a variance reduction technique and boosting as a bias reduction technique can result in very high precision and low variance ranking models. We perform thousands of parameter tuning experiments for LambdaMART to achieve a high precision boosting model. Then we show that a bagged ensemble of such LambdaMART boosted models results in higher accuracy ranking models while also reducing variance as much as 50%. We report our results on three public learning-to-rank data sets using four metrics. Bagged LamdbaMART outperforms all previously reported results on ten of the twelve comparisons, and bagged LambdaMART outperforms non-bagged LambdaMART on all twelve comparisons. For example, wrapping bagging around LambdaMART increases NDCG@1 from 0.4137 to 0.4200 on the MQ2007 data set; the best prior results in the literature for this data set is 0.4134 by RankBoost.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"Bagging gradient-boosted trees for high precision, low variance ranking models\",\"authors\":\"Y. Ganjisaffar, R. Caruana, C. Lopes\",\"doi\":\"10.1145/2009916.2009932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that boosting provides excellent predictive performance across a wide variety of tasks. In Learning-to-rank, boosted models such as RankBoost and LambdaMART have been shown to be among the best performing learning methods based on evaluations on public data sets. In this paper, we show how the combination of bagging as a variance reduction technique and boosting as a bias reduction technique can result in very high precision and low variance ranking models. We perform thousands of parameter tuning experiments for LambdaMART to achieve a high precision boosting model. Then we show that a bagged ensemble of such LambdaMART boosted models results in higher accuracy ranking models while also reducing variance as much as 50%. We report our results on three public learning-to-rank data sets using four metrics. Bagged LamdbaMART outperforms all previously reported results on ten of the twelve comparisons, and bagged LambdaMART outperforms non-bagged LambdaMART on all twelve comparisons. For example, wrapping bagging around LambdaMART increases NDCG@1 from 0.4137 to 0.4200 on the MQ2007 data set; the best prior results in the literature for this data set is 0.4134 by RankBoost.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2009932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bagging gradient-boosted trees for high precision, low variance ranking models
Recent studies have shown that boosting provides excellent predictive performance across a wide variety of tasks. In Learning-to-rank, boosted models such as RankBoost and LambdaMART have been shown to be among the best performing learning methods based on evaluations on public data sets. In this paper, we show how the combination of bagging as a variance reduction technique and boosting as a bias reduction technique can result in very high precision and low variance ranking models. We perform thousands of parameter tuning experiments for LambdaMART to achieve a high precision boosting model. Then we show that a bagged ensemble of such LambdaMART boosted models results in higher accuracy ranking models while also reducing variance as much as 50%. We report our results on three public learning-to-rank data sets using four metrics. Bagged LamdbaMART outperforms all previously reported results on ten of the twelve comparisons, and bagged LambdaMART outperforms non-bagged LambdaMART on all twelve comparisons. For example, wrapping bagging around LambdaMART increases NDCG@1 from 0.4137 to 0.4200 on the MQ2007 data set; the best prior results in the literature for this data set is 0.4134 by RankBoost.