基于自学习的多媒体信号分解:综述与比较研究

Li-Wei Kang, C. Yeh, Duan-Yu Chen, Chia-Tsung Lin
{"title":"基于自学习的多媒体信号分解:综述与比较研究","authors":"Li-Wei Kang, C. Yeh, Duan-Yu Chen, Chia-Tsung Lin","doi":"10.1109/APSIPA.2014.7041778","DOIUrl":null,"url":null,"abstract":"Decomposition of a signal (e.g., image or video) into multiple semantic components has been an effective research topic for various image/video processing applications, such as image/video denoising, enhancement, and inpainting. In this paper, we present a survey of signal decomposition frameworks based on the uses of sparsity and morphological diversity in signal mixtures and its applications in multimedia. First, we analyze existing MCA (morphological component analysis) based image decomposition frameworks with their applications and explore the potential limitations of these approaches for image denoising. Then, we discuss our recently proposed self-learning based image decomposition framework with its applications to several image/video denoising tasks, including single image rain streak removal, denoising, deblocking, joint super-resolution and deblocking for a highly compressed image/video. By advancing sparse representation and morphological diversity of image signals, the proposed framework first learns an over-complete dictionary from the high frequency part of an input image for reconstruction purposes. An unsupervised or supervised clustering technique is applied to the dictionary atoms for identifying the morphological component corresponding to the noise pattern of interest (e.g., rain streaks, blocking artifacts, or Gaussian noises). Different from prior learning-based approaches, our method does not need to collect training data in advance and no image priors are required. Our experimental results have confirmed the effectiveness and robustness of the proposed framework, which has been shown to outperform state-of-the-art approaches.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Self-learning-based signal decomposition for multimedia applications: A review and comparative study\",\"authors\":\"Li-Wei Kang, C. Yeh, Duan-Yu Chen, Chia-Tsung Lin\",\"doi\":\"10.1109/APSIPA.2014.7041778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decomposition of a signal (e.g., image or video) into multiple semantic components has been an effective research topic for various image/video processing applications, such as image/video denoising, enhancement, and inpainting. In this paper, we present a survey of signal decomposition frameworks based on the uses of sparsity and morphological diversity in signal mixtures and its applications in multimedia. First, we analyze existing MCA (morphological component analysis) based image decomposition frameworks with their applications and explore the potential limitations of these approaches for image denoising. Then, we discuss our recently proposed self-learning based image decomposition framework with its applications to several image/video denoising tasks, including single image rain streak removal, denoising, deblocking, joint super-resolution and deblocking for a highly compressed image/video. By advancing sparse representation and morphological diversity of image signals, the proposed framework first learns an over-complete dictionary from the high frequency part of an input image for reconstruction purposes. An unsupervised or supervised clustering technique is applied to the dictionary atoms for identifying the morphological component corresponding to the noise pattern of interest (e.g., rain streaks, blocking artifacts, or Gaussian noises). Different from prior learning-based approaches, our method does not need to collect training data in advance and no image priors are required. Our experimental results have confirmed the effectiveness and robustness of the proposed framework, which has been shown to outperform state-of-the-art approaches.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

将信号(如图像或视频)分解为多个语义成分已经成为各种图像/视频处理应用的有效研究课题,例如图像/视频去噪、增强和涂漆。本文综述了基于稀疏性和形态多样性的信号分解框架及其在多媒体中的应用。首先,我们分析了现有的基于形态成分分析的图像分解框架及其应用,并探讨了这些方法在图像去噪方面的潜在局限性。然后,我们讨论了我们最近提出的基于自学习的图像分解框架及其在若干图像/视频去噪任务中的应用,包括单幅图像雨纹去除、去噪、去块、高度压缩图像/视频的联合超分辨率和去块。通过提高图像信号的稀疏表示和形态多样性,该框架首先从输入图像的高频部分学习一个过完备字典进行重建。将无监督或有监督聚类技术应用于字典原子,以识别与感兴趣的噪声模式(例如,雨条,阻塞伪影或高斯噪声)相对应的形态学成分。与之前基于学习的方法不同,我们的方法不需要提前收集训练数据,也不需要图像先验。我们的实验结果证实了所提出框架的有效性和鲁棒性,该框架已被证明优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-learning-based signal decomposition for multimedia applications: A review and comparative study
Decomposition of a signal (e.g., image or video) into multiple semantic components has been an effective research topic for various image/video processing applications, such as image/video denoising, enhancement, and inpainting. In this paper, we present a survey of signal decomposition frameworks based on the uses of sparsity and morphological diversity in signal mixtures and its applications in multimedia. First, we analyze existing MCA (morphological component analysis) based image decomposition frameworks with their applications and explore the potential limitations of these approaches for image denoising. Then, we discuss our recently proposed self-learning based image decomposition framework with its applications to several image/video denoising tasks, including single image rain streak removal, denoising, deblocking, joint super-resolution and deblocking for a highly compressed image/video. By advancing sparse representation and morphological diversity of image signals, the proposed framework first learns an over-complete dictionary from the high frequency part of an input image for reconstruction purposes. An unsupervised or supervised clustering technique is applied to the dictionary atoms for identifying the morphological component corresponding to the noise pattern of interest (e.g., rain streaks, blocking artifacts, or Gaussian noises). Different from prior learning-based approaches, our method does not need to collect training data in advance and no image priors are required. Our experimental results have confirmed the effectiveness and robustness of the proposed framework, which has been shown to outperform state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信