{"title":"多通道SWIPT的节能资源分配","authors":"T. A. Zewde, M. C. Gursoy","doi":"10.1109/CISS.2016.7460509","DOIUrl":null,"url":null,"abstract":"In this paper, we study optimal resource allocation strategies for simultaneous information and power transfer (SWIPT) focusing on the system energy efficiency. We consider two-user multiple access channels in which energy harvesting (EH) and information decoding (ID) nodes are spatially separated. We formulate optimization problems that maximize system energy efficiency while taking harvested energy constraints into account. These are concave-linear fractional problems, and hence Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to obtain globally optimal solution. Solving these optimization problems, we provide analytical expressions for optimal transmit power allocation among the source nodes, and identify the corresponding energy efficiency. We confirm the theoretical analysis via numerical results. Furthermore, we also characterize the effect of circuit power consumption on the system's efficiency as the harvested energy demand varies.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"455 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy-efficient resource allocation for SWIPT in multiple access channels\",\"authors\":\"T. A. Zewde, M. C. Gursoy\",\"doi\":\"10.1109/CISS.2016.7460509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study optimal resource allocation strategies for simultaneous information and power transfer (SWIPT) focusing on the system energy efficiency. We consider two-user multiple access channels in which energy harvesting (EH) and information decoding (ID) nodes are spatially separated. We formulate optimization problems that maximize system energy efficiency while taking harvested energy constraints into account. These are concave-linear fractional problems, and hence Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to obtain globally optimal solution. Solving these optimization problems, we provide analytical expressions for optimal transmit power allocation among the source nodes, and identify the corresponding energy efficiency. We confirm the theoretical analysis via numerical results. Furthermore, we also characterize the effect of circuit power consumption on the system's efficiency as the harvested energy demand varies.\",\"PeriodicalId\":346776,\"journal\":{\"name\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"volume\":\"455 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Annual Conference on Information Science and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2016.7460509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient resource allocation for SWIPT in multiple access channels
In this paper, we study optimal resource allocation strategies for simultaneous information and power transfer (SWIPT) focusing on the system energy efficiency. We consider two-user multiple access channels in which energy harvesting (EH) and information decoding (ID) nodes are spatially separated. We formulate optimization problems that maximize system energy efficiency while taking harvested energy constraints into account. These are concave-linear fractional problems, and hence Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to obtain globally optimal solution. Solving these optimization problems, we provide analytical expressions for optimal transmit power allocation among the source nodes, and identify the corresponding energy efficiency. We confirm the theoretical analysis via numerical results. Furthermore, we also characterize the effect of circuit power consumption on the system's efficiency as the harvested energy demand varies.