{"title":"铁磁和反铁磁薄膜异质结构中的超快磁声","authors":"S. Zhuang, Jiamian Hu","doi":"10.1117/12.2647481","DOIUrl":null,"url":null,"abstract":"Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent terahertz (THz) magnons in ferromagnetic and antiferromagnetic thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Based on dynamical phase-field simulations, we show that the emitted EM wave retains the spectral information of all the magnon modes, providing a basis for detection via THz emission spectroscopy.","PeriodicalId":380113,"journal":{"name":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast magnetoacoustics in ferromagnetic and antiferromagnetic thin-film heterostructures\",\"authors\":\"S. Zhuang, Jiamian Hu\",\"doi\":\"10.1117/12.2647481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent terahertz (THz) magnons in ferromagnetic and antiferromagnetic thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Based on dynamical phase-field simulations, we show that the emitted EM wave retains the spectral information of all the magnon modes, providing a basis for detection via THz emission spectroscopy.\",\"PeriodicalId\":380113,\"journal\":{\"name\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2647481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2647481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafast magnetoacoustics in ferromagnetic and antiferromagnetic thin-film heterostructures
Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent terahertz (THz) magnons in ferromagnetic and antiferromagnetic thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Based on dynamical phase-field simulations, we show that the emitted EM wave retains the spectral information of all the magnon modes, providing a basis for detection via THz emission spectroscopy.