{"title":"影响作用在纤维和基于它的复合材料上","authors":"V. Kudinov, I. Krylov, N. Korneeva","doi":"10.30791/0015-3214-2020-6-69-74","DOIUrl":null,"url":null,"abstract":"The low-velosity impact properties and failure mechanisms of ultra-high molecular weight polyethylene (UHMWPE) fiber (Dyneema®SK-75) and a composite material (CM) based on it with the rigid and flexible matrices were investigated by the “Impact Break” (IB) method. A fundamental difference in deformation behavior and failure mechanisms upon impact on the UHMWPE-fiber and on the CM based on this fiber has been investigated experimentally. It is shown that impact has a little effect on the properties of UHMWPE-fiber, since it is an isotropic material. It has been established that upon impact, the properties of a fiber without a matrix were significantly higher than the properties of CM based on it. Impact action stimulates the interaction between CM components (fibers and matrix). Mechanism of stepwise deformation of anisotropic CM is occurred, which begins from the first moment of impact and ends with the destruction of the CM. A “stairway of deformation” behavior is observed in anisotropic materials. Stepwise deformation is the main form of deformation and the basic mechanism of failure of anisotropic composite materials upon impact.","PeriodicalId":366423,"journal":{"name":"Physics and Chemistry of Materials Treatment","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact action on fiber and composite material based on it\",\"authors\":\"V. Kudinov, I. Krylov, N. Korneeva\",\"doi\":\"10.30791/0015-3214-2020-6-69-74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low-velosity impact properties and failure mechanisms of ultra-high molecular weight polyethylene (UHMWPE) fiber (Dyneema®SK-75) and a composite material (CM) based on it with the rigid and flexible matrices were investigated by the “Impact Break” (IB) method. A fundamental difference in deformation behavior and failure mechanisms upon impact on the UHMWPE-fiber and on the CM based on this fiber has been investigated experimentally. It is shown that impact has a little effect on the properties of UHMWPE-fiber, since it is an isotropic material. It has been established that upon impact, the properties of a fiber without a matrix were significantly higher than the properties of CM based on it. Impact action stimulates the interaction between CM components (fibers and matrix). Mechanism of stepwise deformation of anisotropic CM is occurred, which begins from the first moment of impact and ends with the destruction of the CM. A “stairway of deformation” behavior is observed in anisotropic materials. Stepwise deformation is the main form of deformation and the basic mechanism of failure of anisotropic composite materials upon impact.\",\"PeriodicalId\":366423,\"journal\":{\"name\":\"Physics and Chemistry of Materials Treatment\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Materials Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/0015-3214-2020-6-69-74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Materials Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/0015-3214-2020-6-69-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact action on fiber and composite material based on it
The low-velosity impact properties and failure mechanisms of ultra-high molecular weight polyethylene (UHMWPE) fiber (Dyneema®SK-75) and a composite material (CM) based on it with the rigid and flexible matrices were investigated by the “Impact Break” (IB) method. A fundamental difference in deformation behavior and failure mechanisms upon impact on the UHMWPE-fiber and on the CM based on this fiber has been investigated experimentally. It is shown that impact has a little effect on the properties of UHMWPE-fiber, since it is an isotropic material. It has been established that upon impact, the properties of a fiber without a matrix were significantly higher than the properties of CM based on it. Impact action stimulates the interaction between CM components (fibers and matrix). Mechanism of stepwise deformation of anisotropic CM is occurred, which begins from the first moment of impact and ends with the destruction of the CM. A “stairway of deformation” behavior is observed in anisotropic materials. Stepwise deformation is the main form of deformation and the basic mechanism of failure of anisotropic composite materials upon impact.