色散Maxwell系统的非均质多尺度方法

P. Freese
{"title":"色散Maxwell系统的非均质多尺度方法","authors":"P. Freese","doi":"10.1137/21M1443960","DOIUrl":null,"url":null,"abstract":"In this work, we apply the finite element heterogeneous multiscale method to a class of dispersive first-order time-dependent Maxwell systems. For this purpose, we use an analytic homogenization result, which shows that the effective system contains additional dispersive effects. We provide a careful study of the (time-dependent) micro problems, including $H^2$ and micro errors estimates. Eventually, we prove a semi-discrete error estimate for the method.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Heterogeneous Multiscale Method for dispersive Maxwell systems\",\"authors\":\"P. Freese\",\"doi\":\"10.1137/21M1443960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we apply the finite element heterogeneous multiscale method to a class of dispersive first-order time-dependent Maxwell systems. For this purpose, we use an analytic homogenization result, which shows that the effective system contains additional dispersive effects. We provide a careful study of the (time-dependent) micro problems, including $H^2$ and micro errors estimates. Eventually, we prove a semi-discrete error estimate for the method.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21M1443960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21M1443960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将有限元非均质多尺度方法应用于一类色散一阶时变麦克斯韦系统。为此,我们使用了解析均质化结果,该结果表明有效体系包含额外的色散效应。我们提供了(时间相关的)微观问题的仔细研究,包括$H^2$和微误差估计。最后,我们证明了该方法的半离散误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Heterogeneous Multiscale Method for dispersive Maxwell systems
In this work, we apply the finite element heterogeneous multiscale method to a class of dispersive first-order time-dependent Maxwell systems. For this purpose, we use an analytic homogenization result, which shows that the effective system contains additional dispersive effects. We provide a careful study of the (time-dependent) micro problems, including $H^2$ and micro errors estimates. Eventually, we prove a semi-discrete error estimate for the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信