基于ESPRIT算法的宽带频谱感知

Yanni Shen, Q. Wan, Changxiong Xia, Y. Wan
{"title":"基于ESPRIT算法的宽带频谱感知","authors":"Yanni Shen, Q. Wan, Changxiong Xia, Y. Wan","doi":"10.1109/icomssc45026.2018.8941793","DOIUrl":null,"url":null,"abstract":"Spectrum sensing is a prerequisite for cognitive dio. This paper proposes a wideband spectrum sensing method based on ESPRIT algorithm for detecting active channels. In this method, it detects the occupied channels directly according to the relationship between the Fourier transform (FT) of the multicoset sampler’s output sequences and the active channels, which can save a lot of sampling rate and reduce the computational complexity. And the performance of this method is evaluated by calculating the detection probabilities for different numbers of samples and different signals to noise ratios (SNRs). The simulation results show that the proposed method performs well in low SNR and less data samples.","PeriodicalId":332213,"journal":{"name":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wideband Spectrum Sensing Based on ESPRIT Algorithm\",\"authors\":\"Yanni Shen, Q. Wan, Changxiong Xia, Y. Wan\",\"doi\":\"10.1109/icomssc45026.2018.8941793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrum sensing is a prerequisite for cognitive dio. This paper proposes a wideband spectrum sensing method based on ESPRIT algorithm for detecting active channels. In this method, it detects the occupied channels directly according to the relationship between the Fourier transform (FT) of the multicoset sampler’s output sequences and the active channels, which can save a lot of sampling rate and reduce the computational complexity. And the performance of this method is evaluated by calculating the detection probabilities for different numbers of samples and different signals to noise ratios (SNRs). The simulation results show that the proposed method performs well in low SNR and less data samples.\",\"PeriodicalId\":332213,\"journal\":{\"name\":\"2018 International Computers, Signals and Systems Conference (ICOMSSC)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Computers, Signals and Systems Conference (ICOMSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icomssc45026.2018.8941793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Computers, Signals and Systems Conference (ICOMSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icomssc45026.2018.8941793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

频谱感知是认知音频的先决条件。提出了一种基于ESPRIT算法的宽带频谱感知有源信道检测方法。该方法根据多共集采样器输出序列的傅里叶变换(FT)与活动信道的关系直接检测被占用的信道,节省了大量的采样率,降低了计算复杂度。并通过计算不同样本数和不同信噪比下的检测概率来评价该方法的性能。仿真结果表明,该方法在低信噪比和数据样本较少的情况下具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wideband Spectrum Sensing Based on ESPRIT Algorithm
Spectrum sensing is a prerequisite for cognitive dio. This paper proposes a wideband spectrum sensing method based on ESPRIT algorithm for detecting active channels. In this method, it detects the occupied channels directly according to the relationship between the Fourier transform (FT) of the multicoset sampler’s output sequences and the active channels, which can save a lot of sampling rate and reduce the computational complexity. And the performance of this method is evaluated by calculating the detection probabilities for different numbers of samples and different signals to noise ratios (SNRs). The simulation results show that the proposed method performs well in low SNR and less data samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信