S. Honda, Y. Haraguchi, A. Narazaki, T. Terashima, Y. Terasaki
{"title":"下一代600V CSTBT™具有先进的精细图案和薄晶圆工艺技术","authors":"S. Honda, Y. Haraguchi, A. Narazaki, T. Terashima, Y. Terasaki","doi":"10.1109/ISPSD.2012.6229045","DOIUrl":null,"url":null,"abstract":"In this paper, we present the characteristics of a fabricated 600V CSTBT™ as the next generation IGBT. The techniques applied this novel device include about half-size shrinkage of the transistor unit cell with a fine pattern process and an LPT (Light Punch Through) structure utilizing an advanced thin wafer process technology. As a result, these techniques brought a significant reduction of the Vce(sat) and the Eoff. The Vce(sat)-Eoff trade-off relationship of the proposed CSTBT has been improved by approximately 20% compared to the conventional one possessing wide SOA (Safe Operating Area) enough to device applications.","PeriodicalId":371298,"journal":{"name":"2012 24th International Symposium on Power Semiconductor Devices and ICs","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Next generation 600V CSTBT™ with an advanced fine pattern and a thin wafer process technologies\",\"authors\":\"S. Honda, Y. Haraguchi, A. Narazaki, T. Terashima, Y. Terasaki\",\"doi\":\"10.1109/ISPSD.2012.6229045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the characteristics of a fabricated 600V CSTBT™ as the next generation IGBT. The techniques applied this novel device include about half-size shrinkage of the transistor unit cell with a fine pattern process and an LPT (Light Punch Through) structure utilizing an advanced thin wafer process technology. As a result, these techniques brought a significant reduction of the Vce(sat) and the Eoff. The Vce(sat)-Eoff trade-off relationship of the proposed CSTBT has been improved by approximately 20% compared to the conventional one possessing wide SOA (Safe Operating Area) enough to device applications.\",\"PeriodicalId\":371298,\"journal\":{\"name\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2012.6229045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th International Symposium on Power Semiconductor Devices and ICs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2012.6229045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Next generation 600V CSTBT™ with an advanced fine pattern and a thin wafer process technologies
In this paper, we present the characteristics of a fabricated 600V CSTBT™ as the next generation IGBT. The techniques applied this novel device include about half-size shrinkage of the transistor unit cell with a fine pattern process and an LPT (Light Punch Through) structure utilizing an advanced thin wafer process technology. As a result, these techniques brought a significant reduction of the Vce(sat) and the Eoff. The Vce(sat)-Eoff trade-off relationship of the proposed CSTBT has been improved by approximately 20% compared to the conventional one possessing wide SOA (Safe Operating Area) enough to device applications.