CSG原语的有理平分线

G. Elber, Myung-Soo Kim
{"title":"CSG原语的有理平分线","authors":"G. Elber, Myung-Soo Kim","doi":"10.1145/304012.304028","DOIUrl":null,"url":null,"abstract":"The bisector surface of two rational surfaces in R3 is non-rational, in general. However, in some special cases, the bisector surfaces can have rational parameterization. This paper classifies some of these special cases that are related to constructive solid geometry (CSG). We consider the bisector surfaces between points, lines, planes, spheres, cylinders, cones, and tori. Many cases are shown to yield rational bisector surfaces, while several other cases are still left as open questions.","PeriodicalId":286112,"journal":{"name":"International Conference on Smart Media and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Rational bisectors of CSG primitives\",\"authors\":\"G. Elber, Myung-Soo Kim\",\"doi\":\"10.1145/304012.304028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bisector surface of two rational surfaces in R3 is non-rational, in general. However, in some special cases, the bisector surfaces can have rational parameterization. This paper classifies some of these special cases that are related to constructive solid geometry (CSG). We consider the bisector surfaces between points, lines, planes, spheres, cylinders, cones, and tori. Many cases are shown to yield rational bisector surfaces, while several other cases are still left as open questions.\",\"PeriodicalId\":286112,\"journal\":{\"name\":\"International Conference on Smart Media and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Smart Media and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/304012.304028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/304012.304028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

一般来说,R3中两个有理面的平分面是无理面。然而,在某些特殊情况下,平分面可以有合理的参数化。本文对这些与构造立体几何(CSG)有关的特殊情况进行了分类。我们考虑点、线、平面、球体、圆柱体、锥体和环面之间的平分面。许多情况被证明产生有理平分面,而其他一些情况仍然是悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational bisectors of CSG primitives
The bisector surface of two rational surfaces in R3 is non-rational, in general. However, in some special cases, the bisector surfaces can have rational parameterization. This paper classifies some of these special cases that are related to constructive solid geometry (CSG). We consider the bisector surfaces between points, lines, planes, spheres, cylinders, cones, and tori. Many cases are shown to yield rational bisector surfaces, while several other cases are still left as open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信