RSGAN:利用潜在空间中的人脸和毛发表示进行人脸交换和编辑

Ryota Natsume, Tatsuya Yatagawa, S. Morishima
{"title":"RSGAN:利用潜在空间中的人脸和毛发表示进行人脸交换和编辑","authors":"Ryota Natsume, Tatsuya Yatagawa, S. Morishima","doi":"10.1145/3230744.3230818","DOIUrl":null,"url":null,"abstract":"This abstract introduces a generative neural network for face swapping and editing face images. We refer to this network as \"region-separative generative adversarial network (RSGAN)\". In existing deep generative models such as Variational autoencoder (VAE) and Generative adversarial network (GAN), training data must represent what the generative models synthesize. For example, image inpainting is achieved by training images with and without holes. However, it is difficult or even impossible to prepare a dataset which includes face images both before and after face swapping because faces of real people cannot be swapped without surgical operations. We tackle this problem by training the network so that it synthesizes synthesize a natural face image from an arbitrary pair of face and hair appearances. In addition to face swapping, the proposed network can be applied to other editing applications, such as visual attribute editing and random face parts synthesis.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"54 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"128","resultStr":"{\"title\":\"RSGAN: face swapping and editing using face and hair representation in latent spaces\",\"authors\":\"Ryota Natsume, Tatsuya Yatagawa, S. Morishima\",\"doi\":\"10.1145/3230744.3230818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This abstract introduces a generative neural network for face swapping and editing face images. We refer to this network as \\\"region-separative generative adversarial network (RSGAN)\\\". In existing deep generative models such as Variational autoencoder (VAE) and Generative adversarial network (GAN), training data must represent what the generative models synthesize. For example, image inpainting is achieved by training images with and without holes. However, it is difficult or even impossible to prepare a dataset which includes face images both before and after face swapping because faces of real people cannot be swapped without surgical operations. We tackle this problem by training the network so that it synthesizes synthesize a natural face image from an arbitrary pair of face and hair appearances. In addition to face swapping, the proposed network can be applied to other editing applications, such as visual attribute editing and random face parts synthesis.\",\"PeriodicalId\":226759,\"journal\":{\"name\":\"ACM SIGGRAPH 2018 Posters\",\"volume\":\"54 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"128\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2018 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3230744.3230818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 128

摘要

摘要介绍了一种用于人脸图像交换和编辑的生成神经网络。我们将这种网络称为“区域分离生成对抗网络(RSGAN)”。在现有的深度生成模型中,如变分自编码器(VAE)和生成对抗网络(GAN),训练数据必须代表生成模型综合的内容。例如,通过训练带孔和不带孔的图像来实现图像着色。但是,如果不进行手术,就无法进行真实的人脸交换,因此很难甚至不可能准备一个包含人脸交换前后的人脸图像的数据集。我们通过训练网络来解决这个问题,使其从任意一对面部和头发外观中合成自然的面部图像。除了人脸交换之外,该网络还可以应用于其他编辑应用,如视觉属性编辑和随机人脸部分合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSGAN: face swapping and editing using face and hair representation in latent spaces
This abstract introduces a generative neural network for face swapping and editing face images. We refer to this network as "region-separative generative adversarial network (RSGAN)". In existing deep generative models such as Variational autoencoder (VAE) and Generative adversarial network (GAN), training data must represent what the generative models synthesize. For example, image inpainting is achieved by training images with and without holes. However, it is difficult or even impossible to prepare a dataset which includes face images both before and after face swapping because faces of real people cannot be swapped without surgical operations. We tackle this problem by training the network so that it synthesizes synthesize a natural face image from an arbitrary pair of face and hair appearances. In addition to face swapping, the proposed network can be applied to other editing applications, such as visual attribute editing and random face parts synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信