Jiaming Xu, Rui Wu, Kai Zhu, B. Hajek, R. Srikant, Lei Ying
{"title":"二值矩阵的行和列联合聚类:算法和权衡","authors":"Jiaming Xu, Rui Wu, Kai Zhu, B. Hajek, R. Srikant, Lei Ying","doi":"10.1145/2591971.2592005","DOIUrl":null,"url":null,"abstract":"In standard clustering problems, data points are represented by vectors, and by stacking them together, one forms a data matrix with row or column cluster structure. In this paper, we consider a class of binary matrices, arising in many applications, which exhibit both row and column cluster structure, and our goal is to exactly recover the underlying row and column clusters by observing only a small fraction of noisy entries. We first derive a lower bound on the minimum number of observations needed for exact cluster recovery. Then, we study three algorithms with different running time and compare the number of observations needed by them for successful cluster recovery. Our analytical results show smooth time-data trade offs: one can gradually reduce the computational complexity when increasingly more observations are available.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Jointly clustering rows and columns of binary matrices: algorithms and trade-offs\",\"authors\":\"Jiaming Xu, Rui Wu, Kai Zhu, B. Hajek, R. Srikant, Lei Ying\",\"doi\":\"10.1145/2591971.2592005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In standard clustering problems, data points are represented by vectors, and by stacking them together, one forms a data matrix with row or column cluster structure. In this paper, we consider a class of binary matrices, arising in many applications, which exhibit both row and column cluster structure, and our goal is to exactly recover the underlying row and column clusters by observing only a small fraction of noisy entries. We first derive a lower bound on the minimum number of observations needed for exact cluster recovery. Then, we study three algorithms with different running time and compare the number of observations needed by them for successful cluster recovery. Our analytical results show smooth time-data trade offs: one can gradually reduce the computational complexity when increasingly more observations are available.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591971.2592005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591971.2592005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Jointly clustering rows and columns of binary matrices: algorithms and trade-offs
In standard clustering problems, data points are represented by vectors, and by stacking them together, one forms a data matrix with row or column cluster structure. In this paper, we consider a class of binary matrices, arising in many applications, which exhibit both row and column cluster structure, and our goal is to exactly recover the underlying row and column clusters by observing only a small fraction of noisy entries. We first derive a lower bound on the minimum number of observations needed for exact cluster recovery. Then, we study three algorithms with different running time and compare the number of observations needed by them for successful cluster recovery. Our analytical results show smooth time-data trade offs: one can gradually reduce the computational complexity when increasingly more observations are available.