{"title":"金融时间序列的极端分位数跟踪","authors":"V. Chavez-Demoulin, P. Embrechts, S. Sardy","doi":"10.2139/ssrn.1884053","DOIUrl":null,"url":null,"abstract":"Time series of financial asset values exhibit well-known statistical features such as heavy tails and volatility clustering. We propose a nonparametric extension of the classical Peaks-Over-Threshold method from extreme value theory to fit the time varying volatility in situations where the stationarity assumption may be violated by erratic changes of regime, say. As a result, we provide a method for estimating conditional risk measures applicable to both stationary and nonstationary series. A backtesting study for the UBS share price over the subprime crisis exemplifies our approach.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"Extreme-Quantile Tracking for Financial Time Series\",\"authors\":\"V. Chavez-Demoulin, P. Embrechts, S. Sardy\",\"doi\":\"10.2139/ssrn.1884053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series of financial asset values exhibit well-known statistical features such as heavy tails and volatility clustering. We propose a nonparametric extension of the classical Peaks-Over-Threshold method from extreme value theory to fit the time varying volatility in situations where the stationarity assumption may be violated by erratic changes of regime, say. As a result, we provide a method for estimating conditional risk measures applicable to both stationary and nonstationary series. A backtesting study for the UBS share price over the subprime crisis exemplifies our approach.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1884053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1884053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme-Quantile Tracking for Financial Time Series
Time series of financial asset values exhibit well-known statistical features such as heavy tails and volatility clustering. We propose a nonparametric extension of the classical Peaks-Over-Threshold method from extreme value theory to fit the time varying volatility in situations where the stationarity assumption may be violated by erratic changes of regime, say. As a result, we provide a method for estimating conditional risk measures applicable to both stationary and nonstationary series. A backtesting study for the UBS share price over the subprime crisis exemplifies our approach.