利用机器学习设计一种交通标志分类与识别的混合方法

Guma Ali, Emre Sadıkoğlu, Hatim Abdelhak
{"title":"利用机器学习设计一种交通标志分类与识别的混合方法","authors":"Guma Ali, Emre Sadıkoğlu, Hatim Abdelhak","doi":"10.31185/wjcms.151","DOIUrl":null,"url":null,"abstract":"The automatic system for classifying traffic signs is a critical task of Advanced Driver Assistance Systems (ADAS) and a fundamental technique utilized as an integral part of the various vehicles. The recognizable features of a traffic image are utilized for their classification. Traffic signs are designed to contain specific shapes and colours, with some text and some symbols with high contrast to the background. This paper proposes a hybrid approach for classifying traffic signs by SIFT for image feature extraction and SVM for training and classification. The proposed work is divided into phases: pre-processing, Feature Extraction, Training, and Classification. MATLAB is used for the implementation purpose of the proposed framework, and classification is carried out by utilizing real traffic sign images","PeriodicalId":224730,"journal":{"name":"Wasit Journal of Computer and Mathematics Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design a Hybrid Approach for the Classification and Recognition of Traffic Signs Using Machine Learning\",\"authors\":\"Guma Ali, Emre Sadıkoğlu, Hatim Abdelhak\",\"doi\":\"10.31185/wjcms.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic system for classifying traffic signs is a critical task of Advanced Driver Assistance Systems (ADAS) and a fundamental technique utilized as an integral part of the various vehicles. The recognizable features of a traffic image are utilized for their classification. Traffic signs are designed to contain specific shapes and colours, with some text and some symbols with high contrast to the background. This paper proposes a hybrid approach for classifying traffic signs by SIFT for image feature extraction and SVM for training and classification. The proposed work is divided into phases: pre-processing, Feature Extraction, Training, and Classification. MATLAB is used for the implementation purpose of the proposed framework, and classification is carried out by utilizing real traffic sign images\",\"PeriodicalId\":224730,\"journal\":{\"name\":\"Wasit Journal of Computer and Mathematics Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Computer and Mathematics Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/wjcms.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Computer and Mathematics Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjcms.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交通标志自动分类系统是高级驾驶辅助系统(ADAS)的一项重要任务,也是各种车辆不可或缺的一项基本技术。利用交通图像的可识别特征进行分类。交通标志的设计包含特定的形状和颜色,一些文字和一些符号与背景形成强烈的对比。本文提出了一种基于SIFT图像特征提取和SVM图像训练分类的混合交通标志分类方法。提出的工作分为预处理、特征提取、训练和分类四个阶段。采用MATLAB实现该框架,并利用真实交通标志图像进行分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design a Hybrid Approach for the Classification and Recognition of Traffic Signs Using Machine Learning
The automatic system for classifying traffic signs is a critical task of Advanced Driver Assistance Systems (ADAS) and a fundamental technique utilized as an integral part of the various vehicles. The recognizable features of a traffic image are utilized for their classification. Traffic signs are designed to contain specific shapes and colours, with some text and some symbols with high contrast to the background. This paper proposes a hybrid approach for classifying traffic signs by SIFT for image feature extraction and SVM for training and classification. The proposed work is divided into phases: pre-processing, Feature Extraction, Training, and Classification. MATLAB is used for the implementation purpose of the proposed framework, and classification is carried out by utilizing real traffic sign images
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信