无量词分离逻辑的完全公理化

Stephane Demri, É. Lozes, Alessio Mansutti
{"title":"无量词分离逻辑的完全公理化","authors":"Stephane Demri, É. Lozes, Alessio Mansutti","doi":"10.46298/lmcs-17(3:17)2021","DOIUrl":null,"url":null,"abstract":"We present the first complete axiomatisation for quantifier-free separation\nlogic. The logic is equipped with the standard concrete heaplet semantics and\nthe proof system has no external feature such as nominals/labels. It is not\npossible to rely completely on proof systems for Boolean BI as the concrete\nsemantics needs to be taken into account. Therefore, we present the first\ninternal Hilbert-style axiomatisation for quantifier-free separation logic. The\ncalculus is divided in three parts: the axiomatisation of core formulae where\nBoolean combinations of core formulae capture the expressivity of the whole\nlogic, axioms and inference rules to simulate a bottom-up elimination of\nseparating connectives, and finally structural axioms and inference rules from\npropositional calculus and Boolean BI with the magic wand.\n","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Complete Axiomatisation for Quantifier-Free Separation Logic\",\"authors\":\"Stephane Demri, É. Lozes, Alessio Mansutti\",\"doi\":\"10.46298/lmcs-17(3:17)2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first complete axiomatisation for quantifier-free separation\\nlogic. The logic is equipped with the standard concrete heaplet semantics and\\nthe proof system has no external feature such as nominals/labels. It is not\\npossible to rely completely on proof systems for Boolean BI as the concrete\\nsemantics needs to be taken into account. Therefore, we present the first\\ninternal Hilbert-style axiomatisation for quantifier-free separation logic. The\\ncalculus is divided in three parts: the axiomatisation of core formulae where\\nBoolean combinations of core formulae capture the expressivity of the whole\\nlogic, axioms and inference rules to simulate a bottom-up elimination of\\nseparating connectives, and finally structural axioms and inference rules from\\npropositional calculus and Boolean BI with the magic wand.\\n\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-17(3:17)2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-17(3:17)2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了无量词分离逻辑的第一个完全公理化。逻辑配备了标准的具体小语义,证明系统没有外在特征,如标称/标签。由于需要考虑具体语义,因此不可能完全依赖布尔BI的证明系统。因此,我们提出了无量词分离逻辑的第一个内部hilbert式公理化。微积分分为三个部分:核心公式的公理化,其中核心公式的布尔组合捕获了整体逻辑的表达性,公理和推理规则模拟了自底向上的分离连接词消除,最后是命题微积分和布尔BI的结构公理和推理规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Complete Axiomatisation for Quantifier-Free Separation Logic
We present the first complete axiomatisation for quantifier-free separation logic. The logic is equipped with the standard concrete heaplet semantics and the proof system has no external feature such as nominals/labels. It is not possible to rely completely on proof systems for Boolean BI as the concrete semantics needs to be taken into account. Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free separation logic. The calculus is divided in three parts: the axiomatisation of core formulae where Boolean combinations of core formulae capture the expressivity of the whole logic, axioms and inference rules to simulate a bottom-up elimination of separating connectives, and finally structural axioms and inference rules from propositional calculus and Boolean BI with the magic wand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信