{"title":"Self-Bäcklund仿心几何中的曲线和lam<s:1>方程","authors":"M. Bialy, Gil Bor, S. Tabachnikov","doi":"10.1090/cams/9","DOIUrl":null,"url":null,"abstract":"Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centroaffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms of centroaffine geometry. In particular, the Bäcklund transformation of the Korteweg-de Vries equation can be viewed as a relation between centroaffine curves.\n\nOur paper concerns self-Bäcklund centroaffine curves. We describe general properties of these curves and provide a detailed description of them in terms of elliptic functions. Our work is a centroaffine counterpart to the study done by F. Wegner of a similar problem in Euclidean geometry, related to Ulam’s problem of describing the (2-dimensional) bodies that float in equilibrium in all positions and to bicycle kinematics.\n\nWe also consider a discretization of the problem where curves are replaced by polygons. This is related to discretization of KdV and the cross-ratio dynamics on ideal polygons.","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-Bäcklund curves in centroaffine geometry and Lamé’s equation\",\"authors\":\"M. Bialy, Gil Bor, S. Tabachnikov\",\"doi\":\"10.1090/cams/9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centroaffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms of centroaffine geometry. In particular, the Bäcklund transformation of the Korteweg-de Vries equation can be viewed as a relation between centroaffine curves.\\n\\nOur paper concerns self-Bäcklund centroaffine curves. We describe general properties of these curves and provide a detailed description of them in terms of elliptic functions. Our work is a centroaffine counterpart to the study done by F. Wegner of a similar problem in Euclidean geometry, related to Ulam’s problem of describing the (2-dimensional) bodies that float in equilibrium in all positions and to bicycle kinematics.\\n\\nWe also consider a discretization of the problem where curves are replaced by polygons. This is related to discretization of KdV and the cross-ratio dynamics on ideal polygons.\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Bäcklund curves in centroaffine geometry and Lamé’s equation
Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centroaffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms of centroaffine geometry. In particular, the Bäcklund transformation of the Korteweg-de Vries equation can be viewed as a relation between centroaffine curves.
Our paper concerns self-Bäcklund centroaffine curves. We describe general properties of these curves and provide a detailed description of them in terms of elliptic functions. Our work is a centroaffine counterpart to the study done by F. Wegner of a similar problem in Euclidean geometry, related to Ulam’s problem of describing the (2-dimensional) bodies that float in equilibrium in all positions and to bicycle kinematics.
We also consider a discretization of the problem where curves are replaced by polygons. This is related to discretization of KdV and the cross-ratio dynamics on ideal polygons.