核递归最小二乘中遗忘因子的估计

S. V. Vaerenbergh, I. Santamaría, M. Lázaro-Gredilla
{"title":"核递归最小二乘中遗忘因子的估计","authors":"S. V. Vaerenbergh, I. Santamaría, M. Lázaro-Gredilla","doi":"10.1109/MLSP.2012.6349749","DOIUrl":null,"url":null,"abstract":"In a recent work we proposed a kernel recursive least-squares tracker (KRLS-T) algorithm that is capable of tracking in non-stationary environments, thanks to a forgetting mechanism built on a Bayesian framework. In order to guarantee optimal performance its parameters need to be determined, specifically its kernel parameters, regularization and, most importantly in non-stationary environments, its forgetting factor. This is a common difficulty in adaptive filtering techniques and in signal processing algorithms in general. In this paper we demonstrate the equivalence between KRLS-T's recursive tracking solution and Gaussian process (GP) regression with a specific class of spatio-temporal covariance. This result allows to use standard hyperparameter estimation techniques from the Gaussian process framework to determine the parameters of the KRLS-T algorithm. Most notably, it allows to estimate the optimal forgetting factor in a principled manner. We include results on different benchmark data sets that offer interesting new insights.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Estimation of the forgetting factor in kernel recursive least squares\",\"authors\":\"S. V. Vaerenbergh, I. Santamaría, M. Lázaro-Gredilla\",\"doi\":\"10.1109/MLSP.2012.6349749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent work we proposed a kernel recursive least-squares tracker (KRLS-T) algorithm that is capable of tracking in non-stationary environments, thanks to a forgetting mechanism built on a Bayesian framework. In order to guarantee optimal performance its parameters need to be determined, specifically its kernel parameters, regularization and, most importantly in non-stationary environments, its forgetting factor. This is a common difficulty in adaptive filtering techniques and in signal processing algorithms in general. In this paper we demonstrate the equivalence between KRLS-T's recursive tracking solution and Gaussian process (GP) regression with a specific class of spatio-temporal covariance. This result allows to use standard hyperparameter estimation techniques from the Gaussian process framework to determine the parameters of the KRLS-T algorithm. Most notably, it allows to estimate the optimal forgetting factor in a principled manner. We include results on different benchmark data sets that offer interesting new insights.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在最近的一项工作中,我们提出了一种核递归最小二乘跟踪器(KRLS-T)算法,该算法能够在非平稳环境中跟踪,这要归功于建立在贝叶斯框架上的遗忘机制。为了保证最优的性能,需要确定它的参数,特别是它的核参数,正则化,最重要的是在非平稳环境下,它的遗忘因子。这是自适应滤波技术和一般信号处理算法中常见的困难。本文证明了KRLS-T的递归跟踪解与具有特定时空协方差的高斯过程(GP)回归之间的等价性。该结果允许使用来自高斯过程框架的标准超参数估计技术来确定KRLS-T算法的参数。最值得注意的是,它允许以有原则的方式估计最佳遗忘因素。我们包含了不同基准数据集的结果,提供了有趣的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the forgetting factor in kernel recursive least squares
In a recent work we proposed a kernel recursive least-squares tracker (KRLS-T) algorithm that is capable of tracking in non-stationary environments, thanks to a forgetting mechanism built on a Bayesian framework. In order to guarantee optimal performance its parameters need to be determined, specifically its kernel parameters, regularization and, most importantly in non-stationary environments, its forgetting factor. This is a common difficulty in adaptive filtering techniques and in signal processing algorithms in general. In this paper we demonstrate the equivalence between KRLS-T's recursive tracking solution and Gaussian process (GP) regression with a specific class of spatio-temporal covariance. This result allows to use standard hyperparameter estimation techniques from the Gaussian process framework to determine the parameters of the KRLS-T algorithm. Most notably, it allows to estimate the optimal forgetting factor in a principled manner. We include results on different benchmark data sets that offer interesting new insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信