纯方位测量自适应融合跟踪算法研究

Kun Yang, C. Jiang, Ming Li
{"title":"纯方位测量自适应融合跟踪算法研究","authors":"Kun Yang, C. Jiang, Ming Li","doi":"10.1109/ICUS48101.2019.8995998","DOIUrl":null,"url":null,"abstract":"Target tracking is one of the key technologies in the military application of wireless sensor networks. This paper aims at the characteristics of wireless sensor network nodes, which have limited computing capacity but can conduct data fusion through wireless communication, to improve tracking accuracy from two aspects. On the one hand, an adaptive bias- compensated pseudo-measurement Kalman filter based on process noise is proposed, on the other hand, an adaptive weighted fusion algorithm based on innovation is proposed. Through multiple simulations, the proposed algorithms can significantly improve the tracking accuracy and robustness of the system on the premise of low computational complexity.","PeriodicalId":344181,"journal":{"name":"2019 IEEE International Conference on Unmanned Systems (ICUS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Adaptive Fusion Tracking Algorithm for Bearings-Only Measurement\",\"authors\":\"Kun Yang, C. Jiang, Ming Li\",\"doi\":\"10.1109/ICUS48101.2019.8995998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target tracking is one of the key technologies in the military application of wireless sensor networks. This paper aims at the characteristics of wireless sensor network nodes, which have limited computing capacity but can conduct data fusion through wireless communication, to improve tracking accuracy from two aspects. On the one hand, an adaptive bias- compensated pseudo-measurement Kalman filter based on process noise is proposed, on the other hand, an adaptive weighted fusion algorithm based on innovation is proposed. Through multiple simulations, the proposed algorithms can significantly improve the tracking accuracy and robustness of the system on the premise of low computational complexity.\",\"PeriodicalId\":344181,\"journal\":{\"name\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS48101.2019.8995998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS48101.2019.8995998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标跟踪是无线传感器网络军事应用中的关键技术之一。本文针对无线传感器网络节点计算能力有限,但可以通过无线通信进行数据融合的特点,从两个方面提高跟踪精度。一方面提出了一种基于过程噪声的自适应偏置补偿伪测量卡尔曼滤波器,另一方面提出了一种基于创新的自适应加权融合算法。通过多次仿真,所提算法在保证较低计算复杂度的前提下,显著提高了系统的跟踪精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Adaptive Fusion Tracking Algorithm for Bearings-Only Measurement
Target tracking is one of the key technologies in the military application of wireless sensor networks. This paper aims at the characteristics of wireless sensor network nodes, which have limited computing capacity but can conduct data fusion through wireless communication, to improve tracking accuracy from two aspects. On the one hand, an adaptive bias- compensated pseudo-measurement Kalman filter based on process noise is proposed, on the other hand, an adaptive weighted fusion algorithm based on innovation is proposed. Through multiple simulations, the proposed algorithms can significantly improve the tracking accuracy and robustness of the system on the premise of low computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信